



# Artificial neural network for Acid Sulfate Soil mapping: application to Sirppujoki River catchment

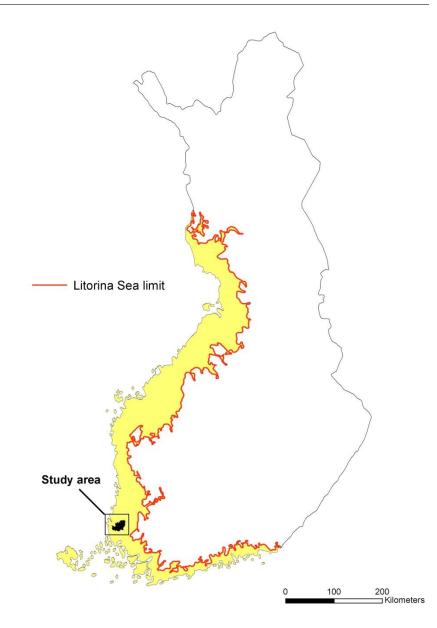
<u>Beucher A.</u>\*, Martinkauppi A., Österholm P., Fröjdö S. and Edén P. \*Department of Geology and Mineralogy, Åbo Akademi University, Finland



### AS Soils in Finland:

- Largest occurrences in Europe (c.1000 km<sup>2</sup>)
- Mostly located below the highest shoreline of the former Litorina Sea
- Small hot spot areas affect large coastal waters

Mapping essential to target strategic places for mitigation





# Acid Sulfate Soil mapping

- Cooperation network conducted by the Geological Survey of Finland (GTK)
- Within the CATERMASS project (EU- Life+)

➔ creation of a nationwide AS soil map

- For this large-scale project
  - Conventional mapping only
    - ➔ too laborious and time-consuming
  - A spatial modeling method: Artificial neural networks
    - → objective, cost-effective and covering large

areas

→ test on a small study area: Sirppujoki catchment

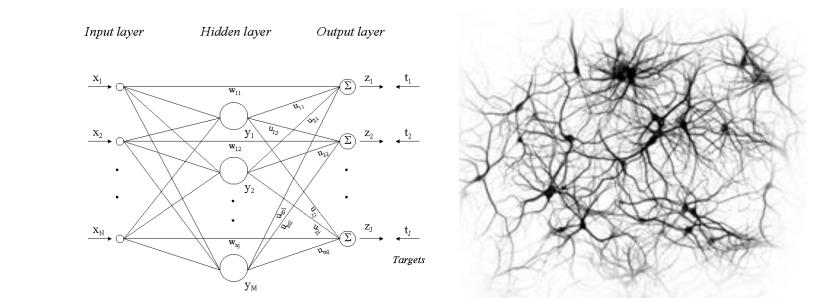


### Artificial neural networks

- Application of an artificial neural network method called:
   Radial Basis Functional Links Net (RBFLN)
- A modeling technique implemented within ArcGIS (ArcSDM) and requiring:
  - training points:
    - AS soil occurences
    - non-AS soil sites
  - evidential data layers: e.g. soil and geophysical data
- Aim of study:

Evaluate the ability of the RBFLN method for AS soil mapping → create probability maps for AS soil occurrence in the study area





- Artificial neural networks mimicking biological nervous system
  - Learning new information and compiling it with old one
  - Good pattern recognition and classification tools
    - → Using input data (training points and data layers)
       → Returning an output (probability map)
- Commonly used for mineral prospectivity mapping



# **Training points**



Soil profiles sampled during summer 2010:

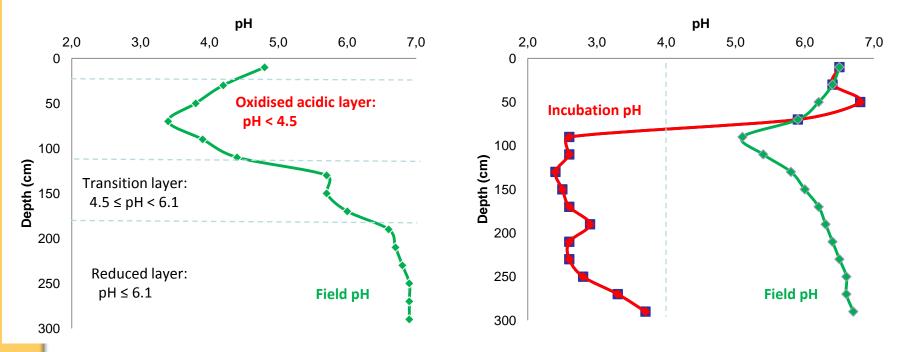
- Samples every 20 cm down to 3 m depth
- pH measured in the field and after 8 weeks of incubation
- Sulfur and metal analyses with ICP-OES (Aqua Regia leaching)

➔ Profiles classified in two categories:

### AS soil occurrences or non-AS soil sites



#### AS soil occurrences used as positive training points within the modeling:



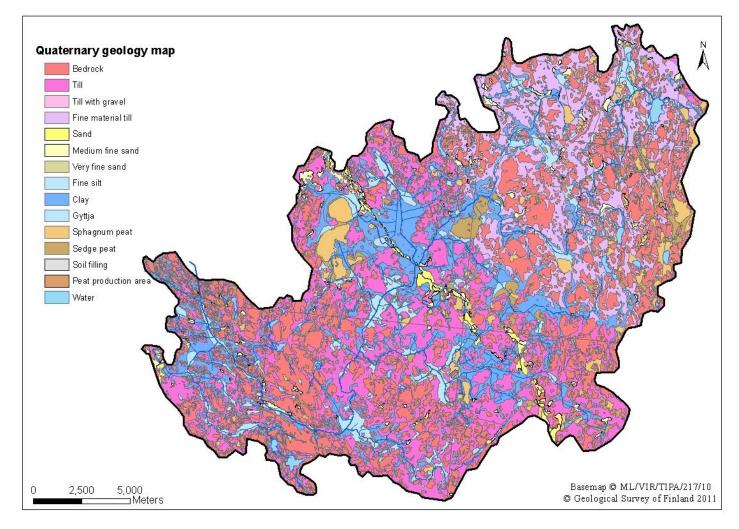
Profiles with an oxidised acidic layer (Field pH < 4.5)</li>
Actual AS soils

After 8 weeks of incubation, profiles containing sulfides (Inc pH ≤ 4.0)
 → Potential AS soils

#### Non-AS soil sites used as negative training points



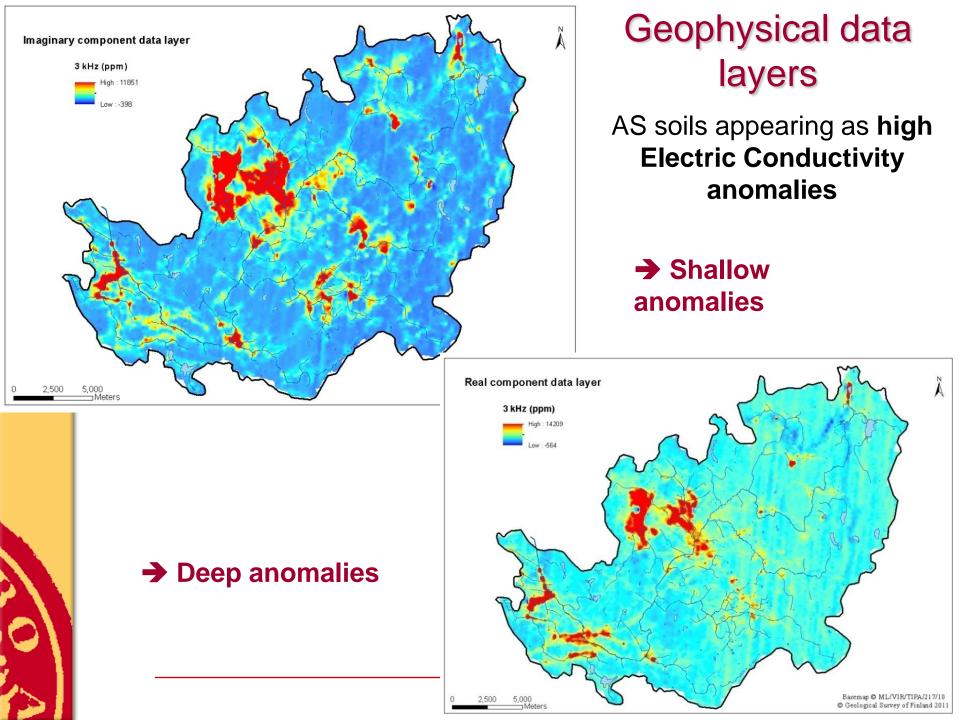
## Quaternary geology map



# ➔ Precisely locate fine-grained sediments in which AS soils occur

25.9.2012

Åbo Akademi University - Domkyrkotorget 1 - 20500 Åbo





RBFLN "combining" training points with evidential data layers:

### • 1) **RBFLN training**:

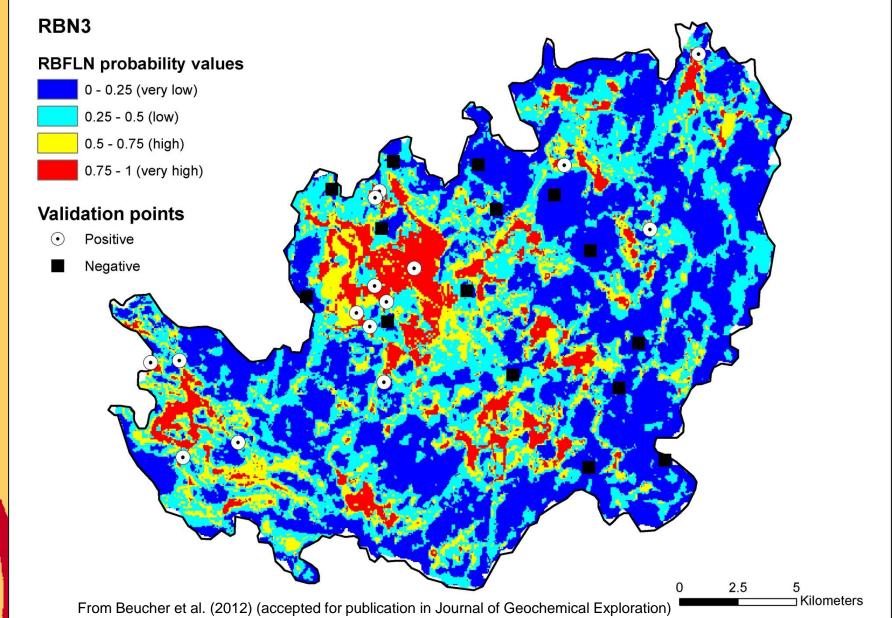
Neural network learning to identify AS soils with

- the training points (positive and negative)
- and their corresponding data layers values
- 2) RBFLN classification:

Classifies all the unknown points according to its training



# Probability map for AS soil occurrence

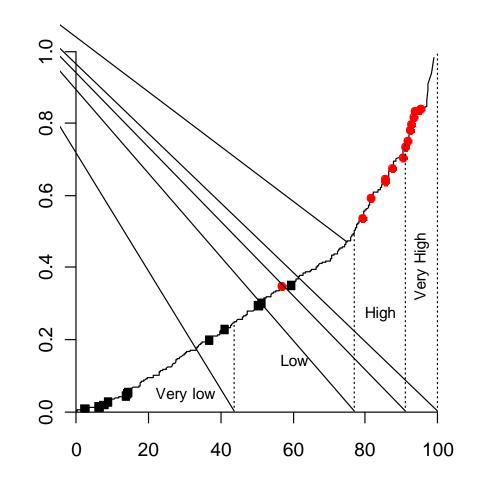




RBFLN probability value

## Use of validation points

RBN3



Cumulative percentage of the study area

Very high probability areas
 → 9% of catchment

area

- High probability areas
   → 14%
- 14/15 positive validation points located in very high/high probability areas
- 15/15 negative validation points in low/very low probability areas



## Conclusions

- Actual AS soil extent estimated for the study area: 12%
- in line with the very high amount of metals and sulfate in the recipient streams (from previous water studies)

high proportion of AS soils in the catchment

- **RBFLN**: very good ability for AS soil mapping in the study area
- Objective method requiring some conventional mapping data and as many as possible evidential data layers
- → Importance of getting more evidential data layers:

e.g. geochemical data and pH/EC from water samples

- Use of expert knowledge to refine the model
- Use of RBFLN for the whole Finnish coast mapping





### Acknowledgement:

- Annu Martinkauppi (GTK)
- Peter Österholm (ÅA)
- Sören Fröjdö (ÅA)
- Peter Edén (GTK)

# Thank you!

#### abeucher@abo.fi