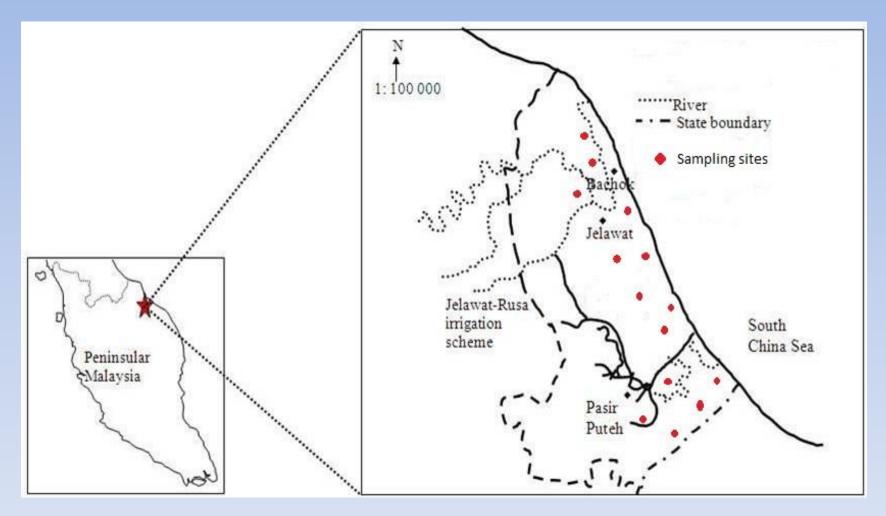
SOIL PROPERTIES AND CARBON DIOXIDE EMISSION FROM SULFIHEMISTS IN THE KELANTAN PLAINS, PENINSULAR MALAYSIA

Enio Kang, M.S.K., Shamsuddin, J., Fauziah, C.I. and Husni, M. H. A.

Department of Land Management, Faculty of Agriculture University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Rise in Sea Level

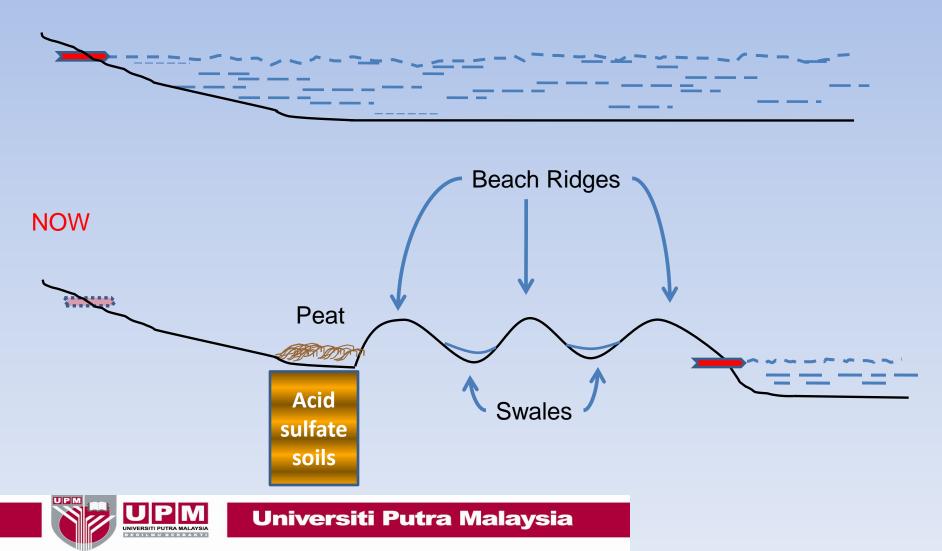
 The presence of sandy beach ridges in Kelantan Plains is an indication of the rise of sea level during the Holocene (<10,000 years ago)

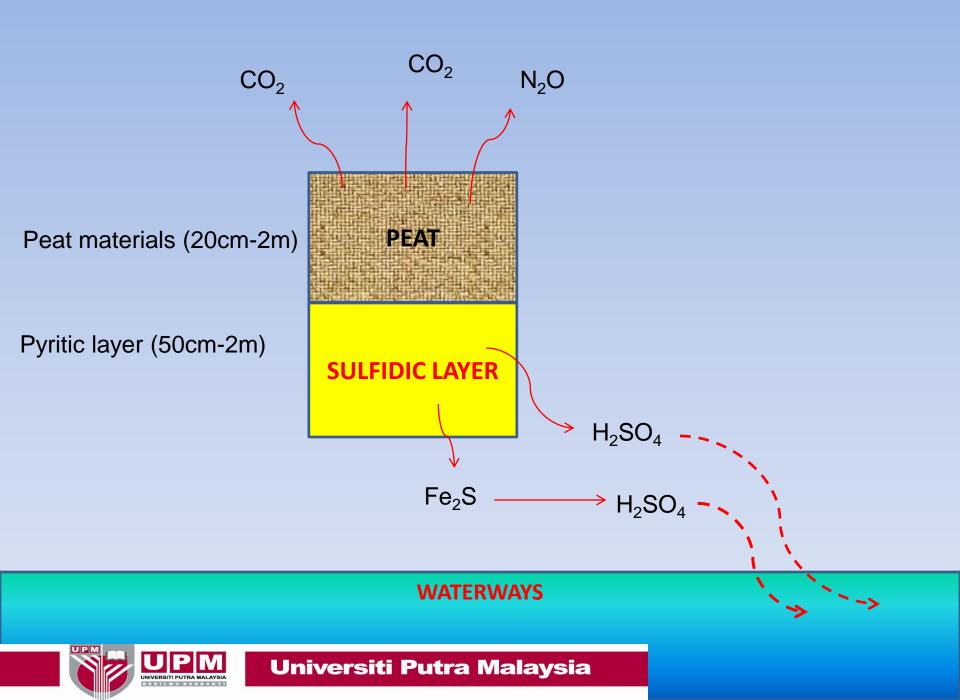

(Haile, 1970)

 About 6000 years ago, the sea level in Asian region was 3-5m above the present

(Pons et.al., 1982)

Study Background




Study site: Kelantan Plains

Formation of Peat Soil on Acid Sulfate

6000 YBP

- Carbon dioxide (CO₂) from soils with peat materials is proven to be a significant source of global warming
- Many studies had intensively measured CO₂ emission from peat soils
- However, the study on release of CO₂ from soils with peat materials mixed with sulfidic layer is uncommon

Objectives

 To determine the properties of soils having peaty materials on pyrite bearing sediments in the Kelantan Plains

• To measure the emission of CO₂ from the soils

MATERIALS AND METHODS

Oil palm was planted on the deep peat (2m)

Rubber trees were planted on the deep peat (2m)

Field Measurement

Collecting soil samples

CO2 flux was measured using LICOR infra red gas analyzer

Recording the soil temperature

Laboratory Analyses

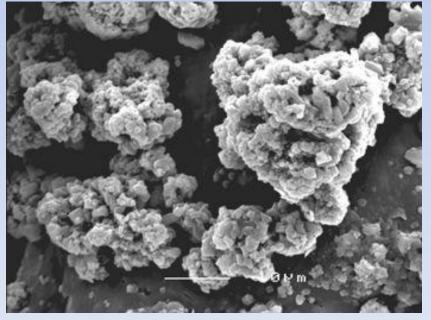
- The soil samples was collected according to depth
 - 0 **0-15cm**
 - \circ 15-30cm
 - o **30-45cm**
 - o **45-60cm**
- The chemical properties of the soils were analyzed in laboratory

RESULTS

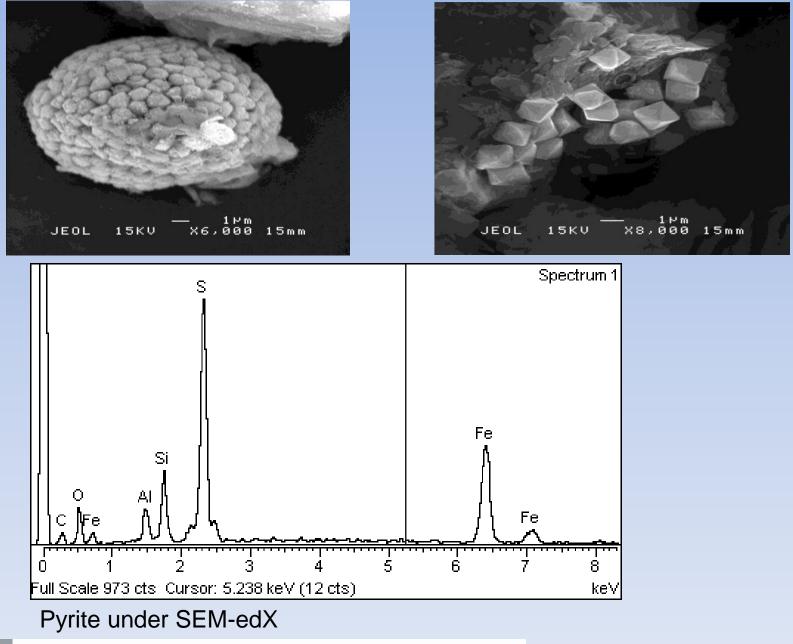
Site	Depth	рН	EC	К	Са	Mg	AI	CEC	Ext. Fe	avail. P	Total N	Total C
	(cm)		(dS/m)	(cmolc/kg)					(mg/kg)	(%)		
OP	0-15	4.3	0.1	1.2	1.8	1.0	3.9	10.0	2.3	17.6	0.3	3.3
	<mark>15-30</mark>	4.3	0.1	0.7	2.3	1.1	4.0	9.0	1.5	19.1	0.2	1.4
	30-45	3.5	0.1	0.7	3.9	1.2	3.7	9.5	1.3	14.2	0.1	1.3
	45-60	3.6	0.1	0.8	3.2	1.2	4.2	12.4	1.9	75.1	0.2	4.2
R	0-15	3.5	0.1	0.6	0.7	0.3	6.2	14.2	0.8	10.0	0.2	4.4
	<mark>15-30</mark>	3.4	0.1	0.5	0.5	0.3	5.5	11.7	0.4	9.5	0.1	2.0
	30-45	3.7	0.1	0.5	0.5	0.3	3.8	9.3	0.1	10.1	0.8	0.9
	45-60	3.5	0.1	0.4	0.4	0.3	5.2	17.6	0.1	10.3	0.4	4.6
G	0-15	4.0	0.1	1.0	0.5	0.4	4.1	20.4	0.2	14.4	0.4	9.3
	15-30	3.5	0.2	0.8	0.5	0.3	6.2	14.3	0.1	14.6	0.2	5.3
	30-45	3.6	0.1	0.7	0.7	0.7	15.7	20.1	0.5	17.4	0.5	13.3
	45-60	3.2	0.2	0.5	1.2	0.8	32.1	10.7	0.3	17.0	0.3	15.1

Soil chemical properties of pyritic soils

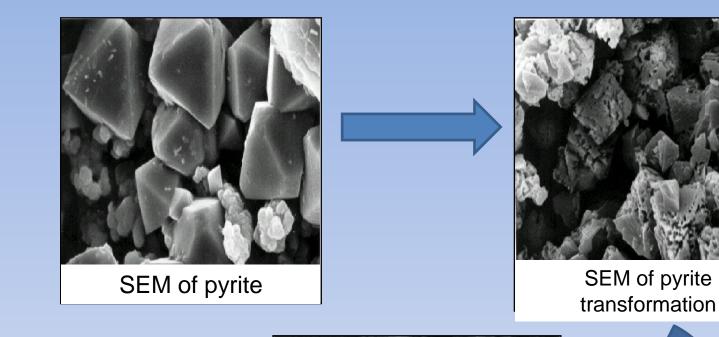
- OP= Oil palm
- R = Rubber
- G = Secondary forest


Universiti Putra Malaysia

Sulfidic layer



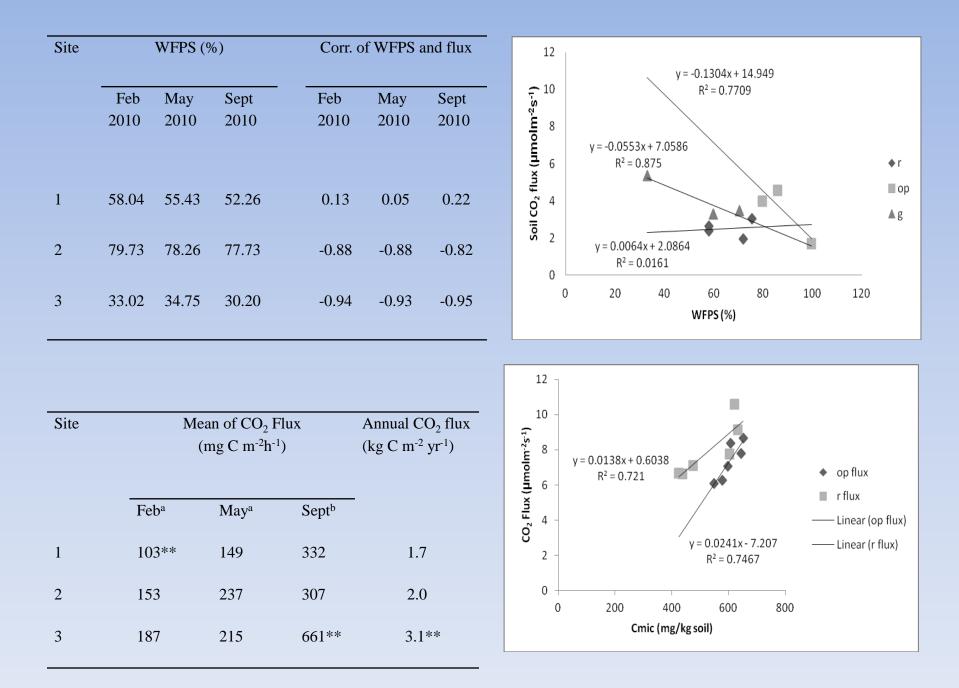
Soils coated with jarosite



Jarosite under SEM

Samples from rubber site

SEM of jarosite



	Rubber	Oil Palm	Secondary
			forest
рН	3.6	4.3	3.0
TC (%)	43	39	14
TN (%)	0.95	0.97	0.56
C:N %	45	40	25
Cmic (mg kg ⁻¹)	586	645	547
Nmic (mg kg ⁻¹)	538	540	442
Soil temperature	25	24	21
Bulk density (g cm ⁻³)	0.22	0.31	0.42

Properties of the topsoil at the time of flux measurement

- Rough estimated CO₂ flux per year is about 4 kg CO₂ m⁻²y⁻¹ for oil palm and 3.2 kg CO₂ m⁻²y⁻¹ for rubber
- This result is higher than the other findings by Lulie (2010) (1.5 kg CO2 m⁻²y⁻¹) that only consists of peat layer
- This noted that the peat soil mixed with sulfidic layer is releasing higher amount of CO₂compared to the area of only peat soils

- Factors affecting the CO₂ flux:
 - Root respiration
 - Soil bulk density
 - Soil microorganisms

• In future studies, need to define the interaction between peat soil and acid sulfate

Any questions,