Vaasa, August 2012

<u>Miloslav Šimek,</u> Seija Virtanen, Asko Simojoki, Vaclav Krištůfek & Markku Yli-Halla

Microbial community in boreal acid sulphate soil: vertical distribution, activity assessment, and potential for greenhouse gas emissions

Long-term links and collaboration (teaching, research)

between groups from Ceské Budejovice (CZ) and Helsinki (FI)

WHY microbial communities in the ASS?

Soil microbial communities

= important in soils, but influencing the environment (water, air)

WHY microbial communities in the ASS?

The ASS occupy large areas
The ASS are of a great importance
The ASS have not been studied yet

WHY microbial communities in the ASS?

The ASS occupy large areas
The ASS are of a great importance
The ASS have not been studied yet

There is a potential to improve our knowledge about distribution of microorganisms in nature.

What has been (well) known?

Boreal ASS contain large amounts of

organic carbon and nitrogen

in subsoils!

ASS

greenhouse gas emission Hot – Spots?

ASS hot spots - hypothesis

large emissions of CO₂, CH₄, and N₂O from AS soils could occur,

ASS hot spots - hypothesis

large emissions of CO_2 , CH_4 , and N_2O from AS soils could occur,

if the soil conditions, e.g. aeration status, change, provided relevant microorganisms are present !!!

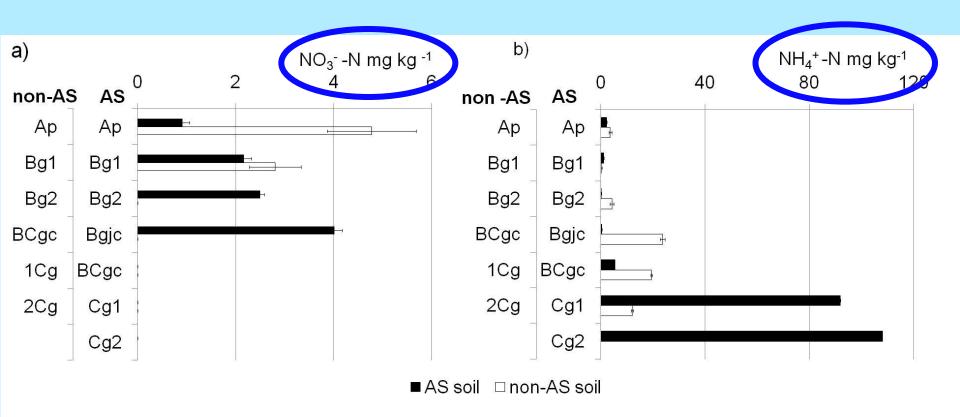
Study area: Viiki Exp. Farm, Uni Helsinki

Soils: ASS (Sulfic Cryaquept) Control (Aquic Haplocryoll)

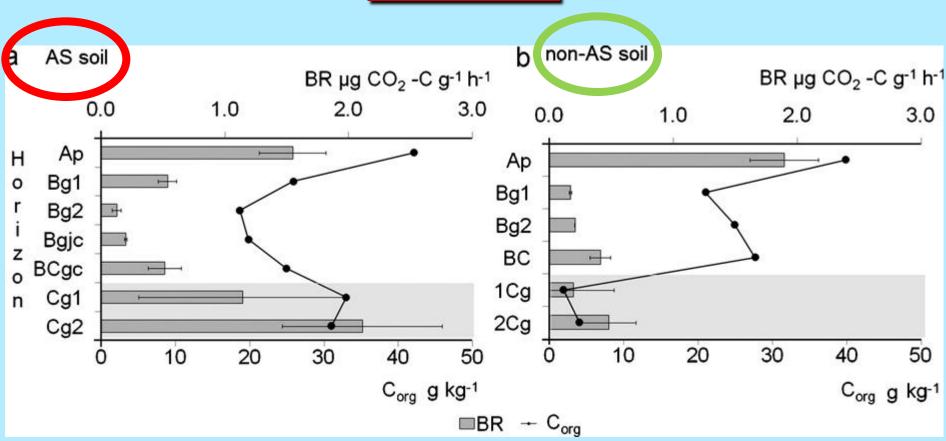
ASS (Sulfic Cryaquept)

Control (Aquic Haplocryoll)

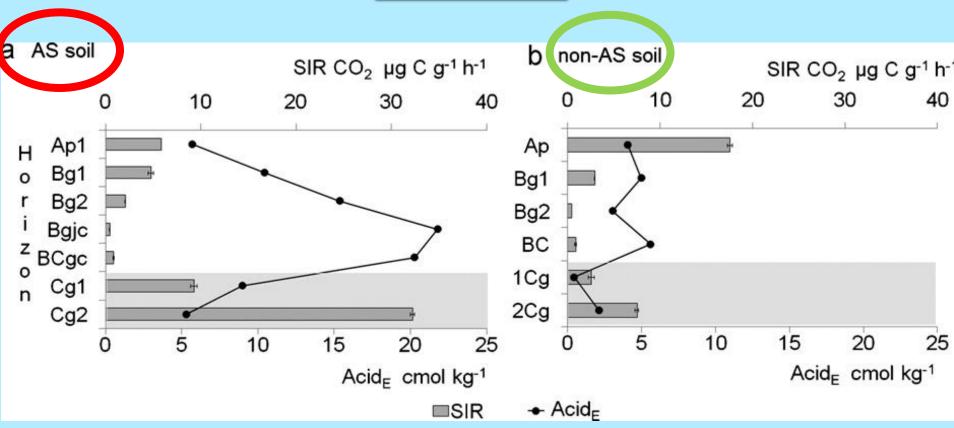
Sampling: 2008 (pilot), autumn 2009, 2010, 2011


Analyses: total C, N, mineral N, pH...etc.

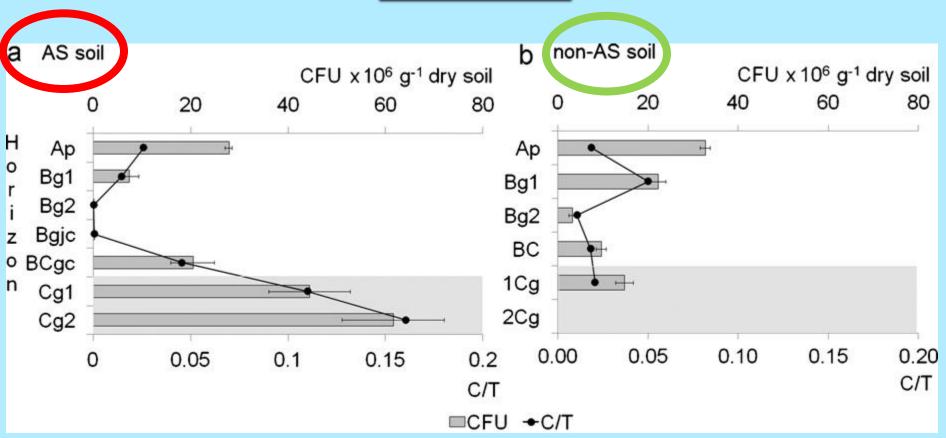
Analyses (2009):


Various "traditional" microbiological measures: Respiration, SIR, DHA, DEA, CFU, counting

Concentrations of NO₃⁻-N (a) and NH₄+-N (b) in different horizons of the AS soil and the non-AS soil. Values are means and standard errors of five replications. Note the different scales on the X axes.


Results

Basal respiration (BR) and organic carbon (C_{org}) in different horizons in the AS (a) and the non-AS soil (b).


Values are means and standard errors of five replications. Permanently watersaturated soil horizons are shaded gray.

<u>Results</u>

Substrate induced respiration (SIR) and extractable acidity (Acid_E) in different horizons in the AS soil (a) and the non-AS soil (b). Values are means and standard errors of five replications. Permanently water-saturated soil horizons are shaded gray.

Results

Colony forming units of bacteria (CFU) and the ratio of culturable to total bacteria cell numbers (C/T) in the different horizons of the AS soil (a) and the non-AS soil (b). Values are means and standard errors of four replications. Permanently water-saturated soil horizons are shaded gray. Data for the 2Cg horizon of the non-AS soil are not available for technical reasons.

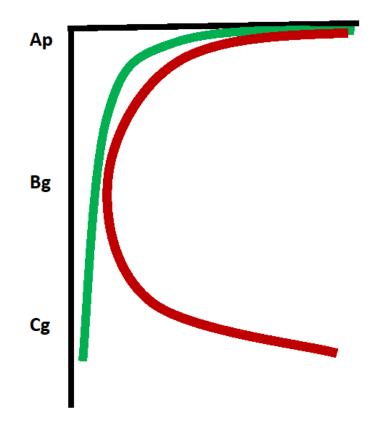
Results 2009 - Summary

number of microorganisms, activity

Ap

Bg

Cg


Common distribution of microorganisms in the soil profile follows the same pattern:

high amounts, high activity in topsoil (0 – 10, 15, ? ... cm), and sharp decreases in depth

EXPECTED

<u>Results 2009 - Summary</u>

number of microorganisms, activity

<u>FOUND</u>

In contrast to "normal" common distribution of microorganisms in the soil profile, very unusual distribution of microorganisms and microbial activity was found in the ASS from Helsinki region.

<u>Results 2009 - Published</u>

Šimek, M., Virtanen, S., Krištůfek, V., Simojoki, A., Yli-Halla, M., 2011.

Evidence of rich microbial communities in subsoil of boreal acid sulphate soil conducive to greenhouse gas emissions.

Agriculture, Ecosystem and Environment, 140, 113-122

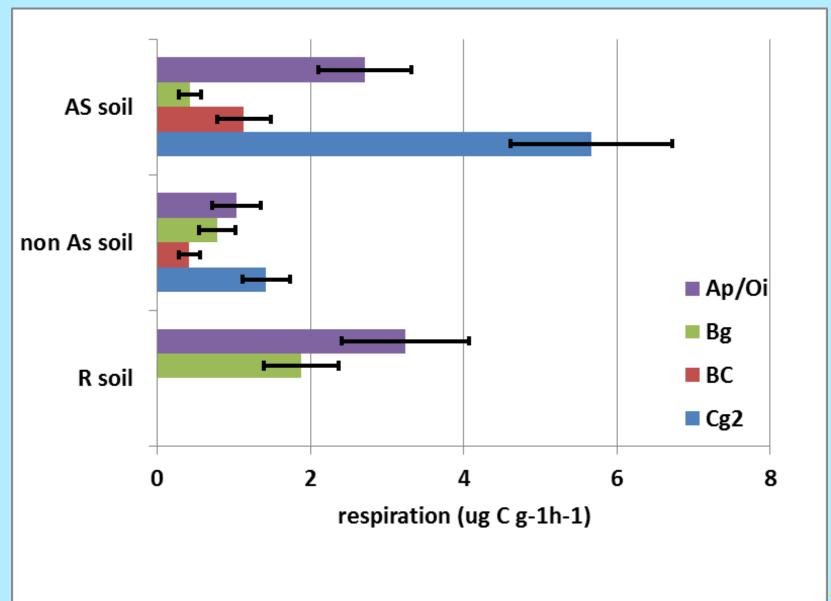
A new experimental setup (2010):

Same AS and control non-AS soils + pristine reedy soil, ,,traditional" microbiological measures: respiration, SIR, CFU, counting

+ PLFA-based + DNA-based

analyses

of microbial community


+ potential CH4, N2O, and CO2

Results 2010 - Example

Results 2010 – Summary

Information from the 2009-study was (i) confirmed completed by PLFA- and DNA- based approaches

Rich microbial communities in the deepest Cg2 horizon were found.

High emissions of GHG could occur when high water table is lowered because of arable farming.

<u>Results 2010 – Summary</u>

Rich microbial communities in the deepest Cg2 horizon were found.

High emissions of GHG could occur when high water table is lowered because of farming.

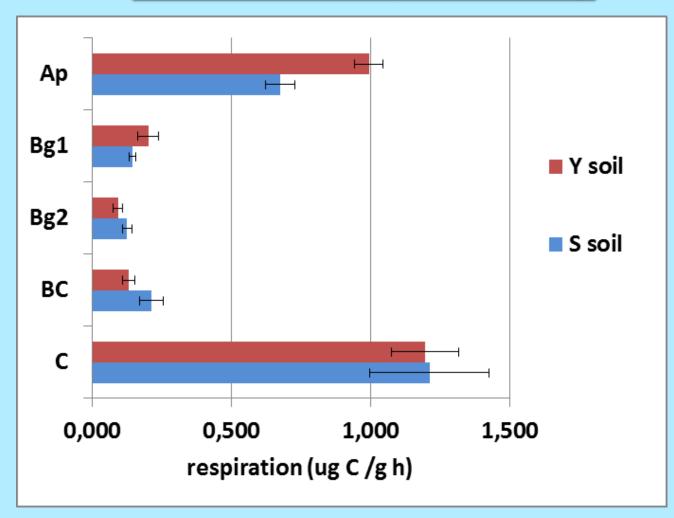
The paper was recently submitted:

The microbial communities and greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils

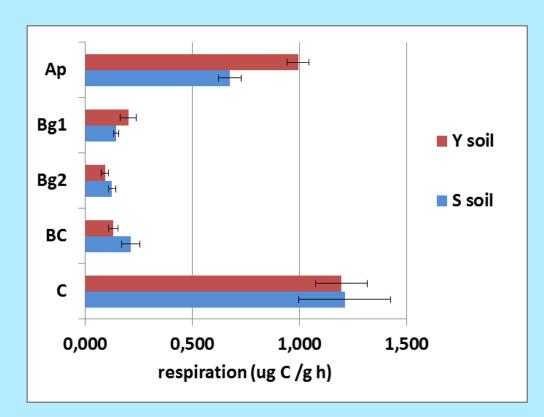
Miloslav Šimek^{a,b}*, Seija Virtanen^c, Asko Simojoki^c, Alica Chroňáková^a, Dana Elhottová^a, Václav Krištůfek^a, Jana Veselá^b, Markku Yli-Halla^c

^a Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice, Czech Republic ^b University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic ^c Department of Food and Environmental Sciences, FI-00014 University of Helsinki, Finland

two acid sulfate fields located on the Ostrobothnia:


Söderfjärden

0-20 cm (Ap), 40-50 cm (Bg1), 80-90 cm (Bg2), 100-115(BC) 150-170 cm (C)


Ylistaro

0-20 cm (Ap), 40-55 cm (Bg1), 85-100 cm 8Bg2), 130-150 cm (BC), 215-235 cm (C).

Results 2011 - preliminary

<u>Results 2011 - preliminary</u>

Again, very high respiration (and other characteristics, not shown) were found in the depth of the AS soils!

General Conclusions

Results show unusual distribution of microorganisms in the profile of ASS.

Microbial communities in C horizons are very rich and together with large C and N stocks represent a potential for high GHG fluxes.

Thanks to

Seija Virtanen, Asko Simojoki, Markku Yli-Halla & Vaclav Krištůfek

City České Budějovice capital of South Bohemia region

Biology Centre - Institute of Soil Biology,
 University of South Bohemia, Faculty of Science

České Budějovice, Czech Republic

Thank you for your attention!