

Greenhouse gas emissions and nutrient losses to water from an acid sulfate soil with different drainage systems

<u>Uusi-Kämppä, J.¹</u>, Mäensivu, M.², Westberg, V.², Regina, K.¹, Rosendahl, R.³, Virtanen, S.⁴, Yli-Halla, M.⁴, Ylivainio, K.¹, Österholm, P.⁵ & Turtola, E.¹

¹MTT Agrifood Research Finland, Plant Production Research, Fl 31600 Jokioinen, Finland
²ELY; Centre for Economic Development, Transport and the Environment in South Ostrobothnia, P.O. Box 262, 65101 Vaasa, Finland
³ProAgria Rural Advisory Centre of Ostrobothnia, Handelsesplanaden 16D, 65100 Vasa, Finland
⁴University of Helsinki, Environmental soil science, P.O. Box 27, 00014 Helsinki, Finland
⁵Åbo Akademi University, Geology and mineralogy, Domkyrkotorget 1, 20500 Åbo, Finland

7th IASSC, 26 August – 1 September 2012, Vaasa, Finland

- 1. Introduction
- 2. Measurements in the Söderfjärden field
- 3. Results:

Contents

- Greenhouse gas emissions
- Nitrogen losses to drainage water
- Grain yields and nutrient concentrations
- 4. Summary

Controlled drainage and pumping

---Subsurface drainage

Aim of the study at Söderfjärden

To decrease oxidation of sulfide zones by keeping them below groundwater level. There was studied the effects of high groundwater level on

- production of acidity
- greenhouse gas emissions
- nutrient and metal losses to water
- cultivated crops

Söderfjärden experimental field

Soil texture: silt loam

Treatments:

- Controlled subsurface drainage with additional pumping of water
- 2. Controlled subsurface drainage
- 3. Conventional drainage

http://www.catermass.fi/

Map: R. Rosendahl

Mark 1–3: // Groundwater level, Soil moisture and temperature

Vatten 1–3:

pH,

Water flow,

Conductivity

S Meteorological station: Rainfall, Air temperature and humidity

Manual and automatic measurements

- Greenhouse gas emissions: N₂O, CO₂
- Groundwater level: lower end of each plot
- Drainage water: concentrations of nutrients and metals, flow, pH, conductivity, $NO_3-N + NO_2-N$
- Soil: *pH*, concentrations of plant-available nutrients, soil temperature and moisture
- Meteorological station: *Rainfall, air temperature, air humidity*
- Crop: grain yield, concentrations of nutrients and harmful heavy metals

Nitrous oxide emissions

- Average flux of N₂O was 79 g N ha⁻¹ day⁻¹ which is very high compared to mineral soils in general and high even if compared to organic soils.
- There were no statistically significant differences in N₂O emission rates between the three drainage treatments.

Total nitrogen in drainage water

NO₃-N in water from controlled drainage with additional pumping

pH in drainage water

Soil pH: 6.6–7.1 in plough layer (0–25 cm) and 5.4–6.5 in subsoil (25–40 cm)

Controlled drainage with pumping Controlled drainage

Conventional drainage

Acidity of drainage water

Grain yields and nutrient concentrations

- Barley yield was 4000 – 5400 kg ha⁻¹ in 2010 and wheat yield 5500 – 5900 kg ha⁻¹ in 2011. No differences were detected between treatments so far.

- There were no differences in test weight (kg hl⁻¹) or thousand seed weight between treatments.

-Concentrations of nutrients and harmful heavy metals in the harvested crops were within the normal range during the first two years

Conclusions

- N₂O emissions were very high from the AS soil. High microbial activities and N content in the subsoil may be the source of the high emissions.
- Cereal cultivation of AS soil seems to produce large NO₃-N losses to drainage water (50 kg ha⁻¹ yr⁻¹) as well.
- No yield effect during the first two years due to elevated ground water level.
- These are preliminary results and monitoring should be continued for some years.

-

Thank you for your attention!

.

Introduction

Effect of water table level

 Lowest flux rates of N₂O were found with high groundwater (r=0.34***)

Experimental soils in Söderfjärden

- Soil texture silt loam

-Soil pH was 6.6 – 7.1 in plough layer (0-25 cm) and 5.4-6.5 in subsoil (25-40 cm)

-Macronutrients (P, Ca, Mg, K, S) were at least the level of satisfactory. Only field number 3 had a lower plant available P compared to fields number 1 and 2 Field 3 fertilized with mineral fertilizer containing P (15 kg ha⁻¹)

-Plant available micronutrient concentrations (Cu, Mn, Zn, Fe) were analyzed with AAAc-EDTA method.

Zn and Mn concentrations were below the level of satisfactory