Aluminium and iron concentrations in pore water of an acid sulfate soil – soil response to waterlogging

Seija Virtanen, Asko Simojoki and Markku Yli-Halla
Department of Food and Environmental Science
Environmental Soil Science
University of Helsinki, Finland

7th International Acid Sulfate Soil Conference in Vaasa, Finland
26 Aug – 1 Sep 2012
The background and the aim of study

In non-calcareous soils oxidation of sulfidic materials results in weathering of minerals and high concentrations of metals in pore water.

How does waterlogging affect the Al and Fe concentration of pore water in an boreal acid sulfate soil?

Could waterlogging be used as a tool to decrease Al concentrations in pore/discharge water?
Hypotheses

Prolonged waterlogging of soil gives rise to reduction reactions

⇒ Rise of pH

⇒ Precipitation of dissolved Al

⇒ Decrease of Al concentrations

⇒ Increase of Fe concentrations because of the reductive dissolution of ferric oxides
The pedon and the characteristics of soil

Horizon	pH	BS	Total S
Ap | 6.4 | 73 | 0.91
Bg2 | 4.4 | 25 | 0.94
Bgjc | 3.8 | 19 | 4.21
BCgc | 4.2 | 27 | 4.57
Cg | 6.5 | 76 | 14.87

\(^1\text{(Na}^+, \text{K}^+, \text{Ca}^{2+}, \text{Mg}^{2+})/\text{CEC} \times 100\)
The measurement of parameters and experimental setup

Pt-electrodes:
Redox potential measurement (E_h)

Soil moisture, temperature and electrical conductivity:
5TE

Pore water samples:
- Rhizon MOM
 - pH, A_{tot}, F_{tot}
 - DOC

Irrigation

LWC = Low Water table, cropped (4)
HWC = High Water table, cropped (4)
HWB = High Water table, bare (2)

E_h, θ, T and EC were logged continuously.
pH, Al, Fe and DOC in pore water were determined biweekly or monthly.
Discussion

Waterlogging of soil resulted in reduction and gradual rise of pH in the B horizons

Waterlogging of soil caused the decrease of Al and the increase of Fe concentrations
 • Al is pH sensitive element
 • Fe pH and redox -sensitive element

Response to waterlogging of soil was retarded in the bare lysimeters
 • Demonstrated the microbiological catalysis in redox processes
Conclusions

Waterlogging of B horizons has a potential to mitigate the hazardous environmental impacts of AS soils by decreasing Al concentrations of pore waters.

In the B horizons, increase in pH of pore water is not necessarily reflected in pH of discharge water, because the high Fe$^{2+}$ concentration may induce acidity when oxidized in drains and streams to Fe$^{3+}$.

Waterlogging promotes permanent water saturation of the C horizon and prevents the massive acid loads arising from this risk horizon.
Thank you for your attention!

The research was funded by
Faculty of Agriculture and Forestry, University of Helsinki,
Academy of Finland,
Natural Resources and Environment Graduate School and
EU CATERMASS Life+

Acknowledgements to Professor Helinä Hartikainen for advice,
to Ossi Knuutila, Kenedy Etone Epie for technical help and
to Olga Nikolenko, Miia Collander and Anja Lammi for laboratory analyses.