

Workshop de présentations et échanges sur les thématiques du projet AgriAs 24 Septembre 2018 – BRGM - Orléans

Procédés de traitement des eaux et remédiation de sols riches en arsenic

Isabel Jordan¹, Hanna Valkama², Esa Turpeinen² Arslan Ahmad³, Marina Le Guédard⁴, Fabienne Battaglia-Brunet⁵

- (1) G.E.O.S. Ingenieurgesellschaft mbH, Germany
 - (2) University of Oulu, Finland
 - (3) KWR, Netherlands
 - (4) LEB Aquitaine, France
 - (5) BRGM, France

Objectifs

- 1. Améliorer l'efficacité des traitements d'eau arséniées
 - Abaisser les teneurs en sortie de traitement pour la potabilisation
 - Proposer des solutions adaptées à la spéciation de l'arsenic
 - Proposer des solutions adaptées pour réduire l'impact des zones polluées sur les eaux souterraines et les eaux de surface
- 2. Proposer des stratégies de remédiation pour les sols agricoles à teneurs élevées en arsenic

Structure de la présentation

- Tâches réalisées dans le cadre du projet AgriAs :
 - 1. Optimisation de technologies de traitement de sol
 - 2. Optimisation de technologies de traitement d'eau
- Survol des travaux du BRGM (hors AgriAs) :
 - 3. Thématique de la bioremédiation des sols et eaux riches en arsenic

1. Projet AgriAs - Traitement du sol

Optimisation de procédé de traitement par GEOS

Adsorbants à base de fer

Etude de:

- La rétention de As et PO₄³⁻
- L'influence sur la croissance des plantes
- L'effet des doses d'amendement
- → Expériences en pots avec de l'orge de printemps
 - 3 concentrations différentes en adsorbant
 - 3 modifications de l'adsorbant

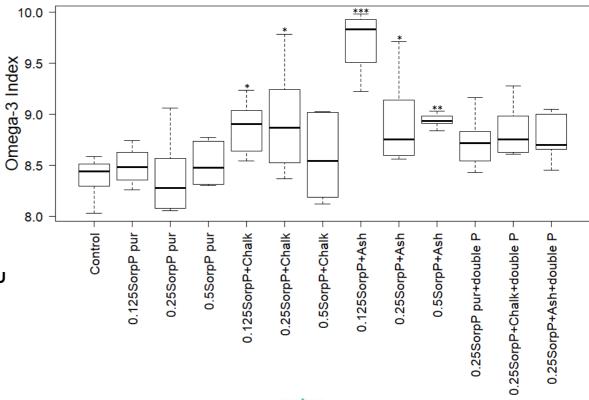
Matériau adsorbant:

Dispositif expérimental:

1. Projet AgriAs - Traitement du sol

Résultats préliminaire sur l'expérience GEOS: Bioindicateurs plantes analysés par LEB Aquitaine

Prélèvements de feuilles :



Index Oméga3 sur les différentes conditions expérimentales :

Tendance diminution de la toxicité du sol pour les plantes par les traitements

Etat de l'art sur les stratégies de remédiation

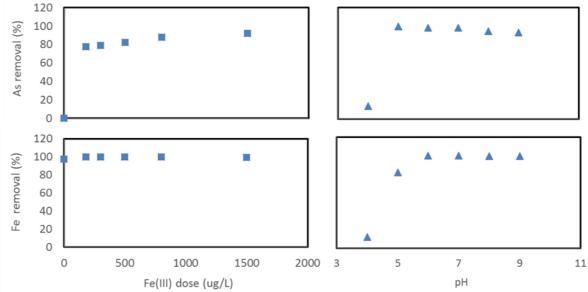
(2) Adsorption/échange (1) Précipitation d'ions . deferrisation / manganèse Alumine activée . coagulation – filtration . fer/nano-sorbants . adoucissement . matériaux géologiques (3) Filtration sur membrane (4) Oxydation Remédiation . nanofiltration/osmose . chimique des eaux inverse . photochimique . ultrafiltration/microfiltration arséniées . oxydation in-situ . procédés hybrides (6) Source de substitution (5) Bioremédiation . aquifères non arséniés . biosorbants . eau de surface traitée . oxydation biologique . eau de pluie

Technique d'oxydation — coprécipitation — filtration avancée KTH-KWR

 $3H_3AsO_3 + 2KMnO_4 \rightarrow 3HAsO_4^{-2} + 2MnO_2$ (s) $+ 2K^+ + 4H^+ + H_2O$ $3Fe^{+2} + KMnO_4 + 7H_2O \rightarrow 3Fe(OH)_3$ (s) $+ MnO_2$ (s) $+ K^+ + 5H^+$ $3Mn^{+2} + 2KMnO_4 + 2H_2O \rightarrow 5MnO_2$ (s) $+ 2K^+ + 4H^+$

Paramètres:

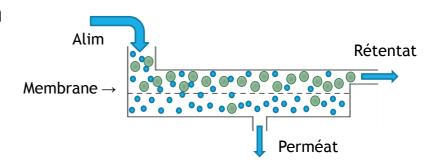
Concentration As	145- 7 50 μg/L
Majeurs	Eau des sites du projet
рН	De 4 à 9
NaCl	De 0,01 à 0,1 M NaCl
KMnO4	1 mg/L
FeCl3	De 0 à 12,7 mg/l



Technique d'oxydation – coprécipitation – filtration avancée KTH-KWR

 $3H_3AsO_3 + 2KMnO_4 \rightarrow 3HAsO_4^{-2} + 2MnO_2$ (s) + $2K^+ + 4H^+ + H_2O$ $3Fe^{+2} + KMnO_4 + 7H_2O \rightarrow 3Fe(OH)_3(s) + MnO_2(s) + K^+ + 5H^+$ $3Mn^{+2} + 2KMnO_4 + 2H_2O \rightarrow 5MnO_2(s) + 2K^+ + 4H^+$

Résultats:



Technique membranaire University of OULU

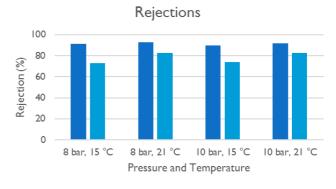
Objectifs:

- Eliminer efficacement l'As et les autres contaminants de l'eau par nanofiltration et osmose inverse à basse pression
- Améliorer la qualité de l'eau et la sélectivité par les technologies membranaires
- Minimiser les coûts par la basse pression

Technique membranaire University of OULU

Paramètres:

Concentration As	130 μg/L, moitié AsIII moitié AsV		
Majeurs	Eau des sites du projet		
рН	6,75 - 7,57		
Membranes	Nanofiltration : NF270 de Dow Filmtec Osmose inverse : AK de GE Osmonics.		
Pression	8 et 10 bars		
Température	15 et 21°C		



Technique membranaire University of OULU

Résultats:

- L'augmentation de temperature a un effet plus important pour augmenter le flux que l'augmentation de pression
- Flux plus important avec la nanofiltration (23-34 µg/L en sortie) mais elimination de l'arsenic plus efficace avec l'osmose inverse (9-13 µg/L en sortie)

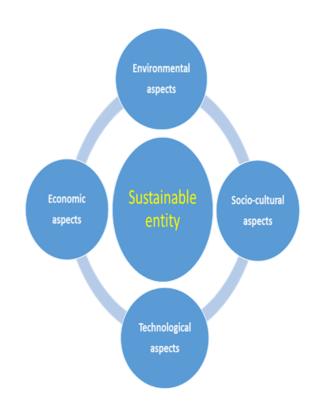
■ Osmonics AK ■ NF 270

■ Osmonics AK ■ NF 270

Technique membranaire University of OULU

Objectifs futurs:

- Echantillons réels et optimisation du procédé de purification
- Combinaison de technologie membranaire avec l'adsorption et/ou la photocatalyse comme procédé hybride
- Concevoir et developer un procédé de remediation durable prenant en compte les aspects environnementaux, sociaux et économiques



Evaluation globale socio-technico-économique des technologies

- La durabilité globale sera réalisée pour évaluer les technologies mises au point
- Cela permettra de comparer les technologies et de choisir la plus adaptée
- L'évaluation sera réalisée sur des critères technologiques, économiques, environnementaux et sociaux

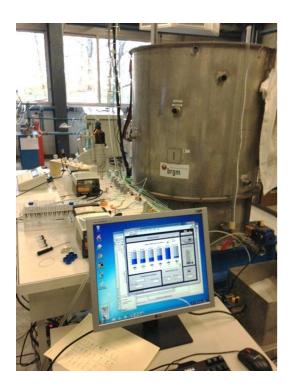
Evaluation alobale socio-technico-économiaue des technologies

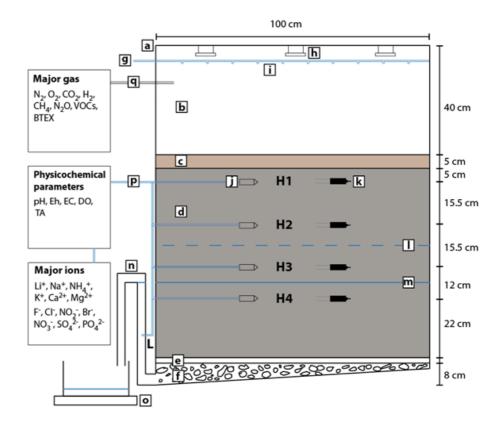
	Critères d'évaluation					
Procédés testés	Critères	Critères économiques	Critères	Critères sociétaux		
	technologiques		Environnementaux			
Séparation par membrane	Pertinence	Investissement	Impact de la fabrication	Acceptabilité		
Adsorption	Flexibilité/extrapolation d'échelle	Coûts opératoires	Génération d'effluents liquides à traiter	Innovation		
Coagulation-filtration	Robustesse, Fiabilité	Coûts de maintenance	Génération de déchets solides	Qualification des opérateurs		
Procédé Hybride	Efficacité d'élimination, (As (III), As (V))	Durée de vie	Matériaux utilisés	Sécurité		
	Cinétique de traitement	Potentiel de commercialisation		Facilité d'utilisation		
	Nécessité d'un pré-					
	traitement	Evaluation qualitative et quantitative appliquant une appreche multi-critères				
	Niveau de maturité					

Chaque procédé sera évalué sur ces critères et recevra une notation

Capacité à éliminer les

autres polluants

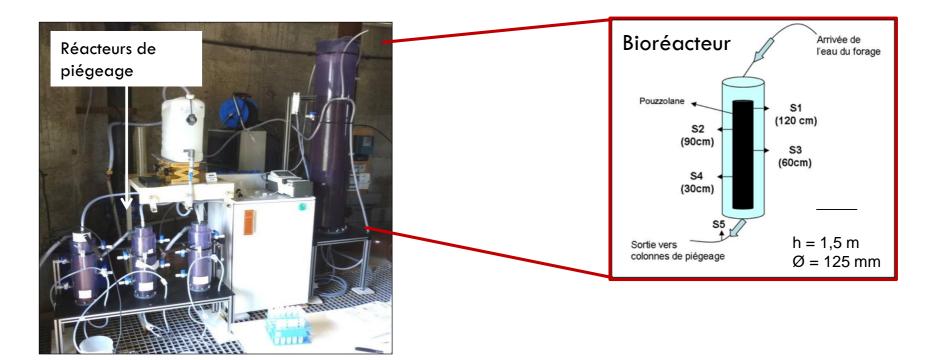




3. Travaux du BRGM dans la thématique

Traitement de sol

- Plateforme PIVOTS-PRIME en construction (multi-échelles)
- Plateforme PRIME-LABBIO en fonctionnement : métrique, étude du transfert sol vers nappe, test de procédés de stabilisation, sans ou avec plantes



3. Travaux du BRGM dans la thématique

Traitement d'eau

 Expérience dans l'oxydation bactérienne de l'AsIII en AsV: projet antérieur sur eau potabilisable -> pilote de traitement sur une commune en Loir-et-Cher, entrée 10-13 µg/L AsIII, 87% d'oxydation en 30 min

3. Travaux du BRGM dans la thématique

Traitement d'eau

 Expérience dans l'oxydation bactérienne de l'AsIII en AsV: projet antérieur sur eau de mine (Bretagne), développement d'un procédé entièrement passif basé sur l'oxidation de Fe et As

Laboratoire

Petite échelle sur site

Pilote sur site

Station achevée en 2017

4. Conclusion - perspectives

Procédés de traitement de l'arsenic

- Niveau d'expersite élevé des instituts et entreprises Européens pour l'arsenic inorganique (AsIII et AsV)
- Travaux de R & D à poursuivre pour atteindre des efficacités de traitement toujours meilleures, et toujours réduire les impacts (moins de déchets, moins de consommation de produits et d'énergie, moins cher...)
- Traitement des espèces arséniées organiques (munitions chimiques):
 peu connu (???), à developer, pertinent pour de nombreux sites en Europe

