

Large-scale arsenic contamination in Saxony (Germany)

Assessment and remediation needs

Ingo Müller & Kati Kardel

Arsenic contamination in soils of Saxony Risk assessment and remediation needs

- General view on German regulation and its approach
- Main threads (Soil-to-Water, Soil-to-Plants, Soil-to-Human)
- **Examining different levels of As concentration (examples)**

General view on the German regulation Soil contamination and brownfields

- German regulation follows the "impact via pathway = thread" approach
 - → Soil-to-Water
 - \rightarrow Soil-to-Plant
 - → Soil-to-Human
 - → Soil-to- ...
- Values (concentration) in German regulation were laid down steplike:
 - Precautionary values (PV) close to background content indicating full functional capability of soil
 - Trigger values (TV) indicate a potential risk which could be at dangerous level
 further detailled investigation is needed to either confirm or deny danger
 - → Action values (AV) exceeding usually confirms danger directly
 - → Risk at dangerous level needs action: remediation (decontamination, securing measures) or protective or restrictive measures (e.g. on land use)

Regulation on metal concentration by BBodSchV in Germany As, Cd, Pb relevant in Saxony

Direct Thread to Humans - Trigger Values [mg kg ⁻¹ d.m., AR-Extraction]				
Element	Playground	Residential area	Parks and leisure facilities	Industrial, commercial / business area
Arsenic	25	50	125	140

Soil-to-Plant-Thread - Trigger (TV) and Action Values (AV) [mg kg ⁻¹ d.m.]*				
Element	Grassland AB-Extraction	Arable land AR-Extraction	Arable land AN-Extraction	
Arsenic	AV 50	TV 200/50 ^a	TV 0.4 ^b	

Soil-to-Groundwater-Thread - [µg l-1]*					
Element	Trigger Values BBodSchV	Re-use of soil material LAGA TR	Planned regulation		
Arsenic	10 (seepage water)	14 (eluate 1:10)	15 (e. 1:2)		

* Regarding plant quality (i.e. meeting the limit values for food and fodder crops) and plant growth

^a 50 mg kg⁻¹ for soil (temporarily) under reducing conditions, e.g. floodplains or other "wet" soils

^b Regarding direct impact on plants (growth depression) only

AR: aqua regia extraction (pseudototal contenct) **AN**: 1 M NH₄NO₃ extraction (plant available fraction)

P90: 90th percentile usually indicating background concentration RL1, 2, 3: concentration indicating (low, medium, high) risk (based on toxicological evidence) range A: range of typical and mainly natural concentration range B: elevated concentration (usually due to anthropogenic sources) but no risk range C: concentration above risk level (usually due to anthropogenic sources)

General view on the Soil-to-Water-Thread (Arsenic) Soil eluate investigation and water quality survey

- Arsenic pseudototal conc. is high but water solubility is quite low.
 → No soil material should leave the Ore Mountain region.
- Arsenic conc. in groundwater and surface water in general meets regulation (only a few exceptions)
- Soil erosion and input of mining waste and tailings material via storm water runoff
 → high impact on sediment quality

General view on the Soil-to-Plant-Thread (Arsenic) Grassland, arable land, gardening

- No (EU) regulation regarding As in food (e.g. cereals like wheat, rye or barley)
- EU-based regulation on As in forage (green fodder, silage, cereals for animals)
- Very low As transfer into plants via root system. Contamination is mainly due to adhering (As-containing) soil material and dust on plant surface.
- \rightarrow in agriculture in general looking at fodder crop systems only
- → Usually Cd associated with As and restrictions are finally based on Cd due to its higher availability to plants and its quite strict regulation in food products
- → recommendations to produce more "clean" (avoid transfer of soil material)
- \rightarrow recommentations to gardeners to wash, strip, peel and clean fruits / vegetables
- \rightarrow Survey of As concentration in fodder (both farmers and administration)

Grassland - problem of adhering contaminated soil

8

General view on the direct Soil-to-Human-Thread (Arsenic) Ingestion, inhalation, dermal contact

- Regulation of German BBodSchV is based on 4 standard exposure scenarios delivering Trigger Values (adjusted according to background concentration for As)
- If TV were exceeded, further investigations are needed (site specific or regional scale)
- I (Only) for some unfavorable situations "risk could turn to danger" when concentration is even slightly above TV – and "Danger needs action"
- Therefore, usually an assessment of exposure is done, looking for both:
 - \rightarrow amount of soil which contacts and enters the human body
 - → amount of arsenic in this amount of soil which is bioavailable to human digestive, respiratory or dermal system
- In general, for arsenic chronic effects due to oral ingestion outweigh the others

Assessment of the Soil-to-Human-Thread (Arsenic) Oral Ingestion as a main source of soil related As intake

Usually in site specific risk assessment only two main factors were evaluated:
→ daily soil ingestion rate (e.g. playground: 0.5 g soil per day at 240 days per year)
→ bioavailability is set to 100% (for all scenarios).

- Usually in site specific risk assessment a lab test (stomachcolon-model procedure) is used to evaluate bioavailability regarding human ingestion
- 90th percentil of the Saxon dataset could be a good estimate of the available fraction, which is about 40% of total As (AR)

	Playground	Residential
German BBodSchV	25	50
Saxon 90 th percentile at 40%	63	125
Saxon 50 th percentile at 25%	100	200
Saxon 10 th percentile at 10%	250	500

Assessment of the Soil-to-Human-Thread (Arsenic) Oral ingestion as a main source of soil related As intake - Examples

	Playground	Residential	Parks	Industry
BBodSchV	25	50	125	140
Saxon 90 th / 50 th perc. bioavail.	63 / 100	125 / 200	313 / 500	?
Example 30 mg/kg	☺ / ☺	☺ / ☺	☺ / ☺	\odot
Example 70 mg/kg	😐 / 🙂	☺ / ☺	☺ / ☺	\odot
Example 150 mg/kg	8 / 8	😐 / 🙂	☺ / ☺	:
Example 300 mg/kg	8 / 8	8 / 8	☺ / ☺	8

- Main measures aim at disconnecting soil contact: dense plant cover (gras, thorny shrubbs), exchange polluted soil, soil sealing
- Regional assessment uses these percentiles to address measures the higher the statistical probability, the higher the priority and the harder/stronger the measures

Thank you for your attention!

Saxon State Office for Environment, Agriculture and Geology Dep. 42 Soil, Contaminated Sites Halsbruecker Str. 31 a D-09599 Freiberg GERMANY

Contact information:

Dr. Ingo Müller ingo.mueller@smul.sachsen.de Kati Kardel kati.kardel@smul.sachsen.de LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

