Bundesministerium für Ernährung und Landwirtschaft

AgriAs- Risk assessment and risk management of Arsenic in the Tampere Region

Ecotoxicological test and purification methods

Isabel Jordan (G.E.O.S. Ingenieurgesellschaft mbH, Germany) Hanna Valkama, Esa Turpeinen (University of Oulu, Finland) Arslan Ahmad (KWR, Netherlands) The AgriAs Project Team

> **Stakeholder Workshop** 5th June 2018 in Tampere, Finland

05.06.2018

STRUCTURE

- I. Ecotoxicological test methods (G.E.O.S.)
- **II.** Purification methods for Soil (G.E.O.S.)
- III. Investigations on soil treatment within AgriAs project (G.E.O.S.)
- **IV. Purification methods for Water** (UOULU)
- V. Investigations on water treatment within AgriAs project (UOULU, KWR)
- **VI. Sustainability assessment** (UOULU)

I. ECOTOXICOLOGICAL TEST METHODS

05.06.2018

Ecotoxicological testing

- Determination of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels
- Main goal is to be able to reveal and to predict the effects of pollution within the context of all other environmental factors
- Based on this knowledge suitable actions to prevent or remediate any detrimental effect can be identified

Bio-indicators

- Bio-indicators: any species or group of species whose function, population, or status can reveal the qualitative status of the environment
- Monitoring of bio-indicators for changes can show problems within their environment/ ecosystem
- Give information about effects of different pollutants and influencing factors of the ecosystem, which cannot be obtained by chemical testing

Ecotoxicological tests and Bio-indicators for As polluted soils

Soil organisms e.g. Lumbricidae, Nematoda, Enchytraeidae, Collembola **Terrestrial plants** e.g. winter wheat, spring barley, rape, lettuce

Microorganisms e.g. bacteria, fungi, protozoa

Acute toxicity (mortality) Reproduction (cocoons, descendants)

Inhibitory effect

(germination, growth)

Bio-indicators of availability

(Lipid peroxidation (Omega-3))

Bio-indicators of availability (abundance and activity)

6/30

Ecotoxicological tests and Bio-indicators for soil eluates

Water organisms e.g. Cladocera	Water plants e.g. Lemna	Microorganisms e.g. Chlorella				
		Enzymatic in vitro test e.g. RET with sub- mitochondrial particles				
Source: Dieter Ebert, Basel, Switzerland https://en.wikipedia.org/wiki/Daphnia_magna# /media/File:Daphnia_magna_asexual.jpg	Source: Kristian Peters https://commons.wikimedia.o rg/wiki/File:Lemna_minor_det ail.jpeg	Source: https://aldae.esearchsnbbl Source: http://ww/.1prweb.c com/prfiles/2011/02/07/444				
Acute toxicity (mortality) Reproduction (descendants)	Inhibitory effect (growth)	Inhibitory effect (activity)				

05.06.2018

PURIFICATION METHODS FOR SOIL

Overview of Technologies

Overview of Technologies

INVESTIGATIONS ON SOIL TREATMENT WITHIN AGRIAS PROJECT

Soil amendments for Arsenic immobilization

Iron-based adsorbents

- Investigations on
 - Retention of As and PO_4^{3-}
 - Influence on plants growth
 - Optimized dosage
- \rightarrow Pot trials with spring barley
 - 3 different concentrations of adsorbent
 - 3 modifications of adsorbent

Experimental setup:

ource:G.E.O.S

Adsorbent material:

Test work on Microbial bio-indicators

Activity test of As(III)-oxidation

• Specific medium

05.06.2018

- Inoculated with of soil
- Aerobic incubation
- Sampling and analyse of As(V)

 Same type of method used for As(V)-reduction Experimental setup:

Activity test for Verdun site:

13/30

Test work on Microbial bio-indicators

Most probable number of As(III)oxidizing microorganisms

Specific medium

05.06.2018

- Dilutions of soil suspension
- Remaining As(III) revealed after
 10 days incubation
- Same type of method used for As(V)-reducing microorg.

Experimental setup:

As(III)-oxidizing organisms at the end of the experiment:

Test work on Plants bio-indicator

Omega-3-Index

05.06.2018

Experimental setup + leaf samples:

Omega-3-Index for pot tests with adsorbent:

PURIFICATION METHODS FOR WATER

INVESTIGATIONS ON WATER TREATMENT WITHIN AGRIAS PROJECT

Remediation of Arsenic Contaminated Water

Advanced Oxidation—Coprecipitation—Filtration (AOCF)

 $3H_3AsO_3 + 2KMnO_4 \rightarrow 3HAsO_4^{-2} + 2MnO_2 (s) + 2K^+ + 4H^+ + H_2O_2 (s)$

WINNERSITY KW

 $3Fe^{+2}$ + KMnO₄ + 7H₂O \rightarrow $3Fe(OH)_3(s)$ + MnO₂ (s) + K⁺ + 5H⁺

 $3Mn^{\star2} \textbf{+} 2KMnO_4 \textbf{+} 2H_2O \rightarrow 5MnO_2(\textbf{s}) \textbf{+} 2K^{\star} \textbf{+} 4H^{\star}$

Scope

Performance of AOCF in removing arsenic from the polluted water from the contaminated sites (Verdun, Saxony) and optimal process conditions?

Methodology

Saxon (Kleine Biela) Verdun (Pond water)

pН	7.5	
Alkalinity	150	mg HCO ₃ /I
As III	30	μg/l
AsV	100	μg/l
Total As	130	μg/l
DOC	3	mg/l
Ca	50	mg/l
Fe	70	μg/l
Mg	4	mg/l
Mn	50	μg/l
Si	2	mg SiO ₂ /l
Р	0.05	mg PO ₄ /I
Ν	2	mg NO ₃ /I
Na	6	mg/l
S	20	mg SO ₄ /I

Experimental conditions

Initial As concentration :145-750 µg/l

pH=4, 5, 6, 7, 8, 9

Coagulant dose : FeCl3=0, 2, 3, 5, 8, 12,7 mg/l

Ionic strength: 0.1 M NaCl, 0.05 M NaCl and 0.01 M NaCl.

Oxidant: 1 mg/l KMnO₄

Filtration : 0.45 µm disc filters

Determination of coagulant dose: with the use of Visual Minteq 3.1

Analysis of the results

Inductively coupled plasma-optical emission spectroscopy (ICP-OES)

Results

PURIFICATION OF WATER BY MEMBRANE TECHNOLOGY

Objective

- To efficiently remove As and other contaminants from water by nanofiltration and low pressure reverse osmosis (LPRO).
- Membrane technologies are promising methods for arsenic removal
 - + selectivity
 - + high quality water as the product.
- Low pressure was preferred to minimize the energy costs of the process.

Materials and Methods

Materials and Methods

- Model water mimicking contaminated natural waters from France and Germany was used.
- The initial total arsenic concentration was 130 µg/l, containing both As(III) and As(V).
- The combined effect of other compounds was studied.
- Flat sheet membranes:
 - Nanofiltration membrane NF270 from Dow Filmtec
 - Reverse osmosis membrane Osmonics AK from GE Osmonics.
- Pressures of 8 and 10 bars
- Temperatures of 15 and 21 °C.
- pH close to neutral, 6.76–7.57.

Sepa CF cross-flow membrane unit

- Effective membrane area A = 0.014 m².
- Wanner Hydra-Cell diaphragm pump.
- Cooling with VWR digital temperature controller, model 1156D.

Results

- An increase in temperature was observed to enhance the rejection more than an increase in the operation pressure.
- The fluxes remained constant during each experiment with both membranes.
- Higher pressure and temperature \rightarrow higher fluxes.
- The flux in NF 270 was higher
 VS.
- The arsenic removal of Osmonics AK was higher.

Osmonics AK NF 270

Osmonics AK NF 270

Conclusions

> Both membranes were able to separate arsenic in relatively low pressure

- \succ Savings to energy costs.
- Arsenic concentration of the water purified with the Osmonics AK membrane was between 9–13.4 µg/l.
 - > The lowest value of 9 µg/l was below the WHO guidelines for drinking water, 10 µg/l.
- Arsenic concentration (22.9–34.3 µg/l) of the water purified with NF 270
 - Still meets the looser limits of e.g. of Bangladesh drinking water standard of 50 µg/l.

Future objectives

- Real water samples and optimization of the purification process
- Combining the membrane technologies with adsorption and/or photocatalysis as a hybrid process.
- To design and develop a sustainable As removal process by taking into account environmental, economic and social aspects.

SUSTAINABILITY ASSESSMENT

Sustainability assessment

- Sustainability assessment will be conducted to evaluate arsenic removal technologies
- Helps to compare and choose among several design possibilities
- Considers technological, economic, environmental, health and social sustainability issues

General sustainability assessment procedure

Sustainability assessment methods and tools

Methods:

- Life cycle related methods
- Hybrid methods
- Integrated methods
- Methods focusing on costs
- Methods spesific to the chemical industry
- Methods spesific to the agricultural, forestry and food sectors
- Other methods

López A., Mabe L., Sanchez B., Tapia C. and Alonso A., (2015). Best practice solutions: Methods for sustainability assessment within the process industries. Sustainability assessment methods and tools to support decision-making in the process industries (SAMT)

Removal technologies to be assessed

Source: Sing R. (2015) Ecotoxicology and Environmental Safety, 112, 247-270

Assessment criteria

- Qualitative and quantitative assessment using multi-criteria approach
- Assessment is based on the most suitable and essential criteria

	Assessment criteria				
Process	Technological	Economic criteria	Environmental	Societal	
alternatives	criteria		criteria	criteria	
Membrane separation	Suitability	Capital costs	Manufacturing emissions	Acceptability	
Adsorption	Flexibility/Scalability	Operating costs	Liquid waste generation	Innovativeness	
Coagulation- filtration	Robustness, Reliability	Maintenance costs	Solid waste generation	Operator skill requirements	
Hybrid process	Removal efficiency, (As (III),As (V))	Operating life	Used materials	Safety issues	
	Removal rate	Commercialization potential		Usability	
	Pre-treatment need				
	Maturity level				
	Capability to remove other impurities				

- Each alternatives will be assessed against these criteria and rated
- Data will be gathered through laboratory experiments and from the literature and experts

Sustainability assessment for typical removal technologies

Qualitative assessment, HOX! Just an example
Basis: groundwater, high capacity, low final arsenic concentration

Qualita	tive analysis:
+++	very positive
++	positive
+	neutral
	neutrai

	Weighting	Membrane Process	Adsorption Process	Precipitative Process	Hybrid Process
Technological aspects					
Suitability		+	++	+++	
Flexibility/Scalability		+	+++	++	
Robustness, Reliability		++	++	+++	
Removal efficiency, (As (III), As (IV))		+++	++	+	
Removal rate		+++	++	+	
Pre-treatment need		+++	++	+	
Maturity level		++	+++	+++	
Total		15	16	14	
Economic aspects					
Capital costs		+	++	+++	
Operating costs		+	++	+++	
Maintenance costs		++	+++	++	
Operating life		+++	++	++	
Commercialization potential		++	++	++	
Total		9	E E E	12	

Sustainability assessment for typical removal technologies

	Weighting	Membrane Process	Adsorption Process	Precipitative Process	Hybrid Process
Environmental aspects					
		+	++	++	
Manufacturing emissions		-			
Liquid/sludge waste generation		++	+++	+	
Solid waste generation		+++	+	++	
Used materials		++	++	++	
Total		8	8	7	
Societal and health aspects					
Acceptability		++	++	++	
Innovativeness		++	++	++	
Operator skill requirements		++	+	++	
Safety issues		++	++	++	
Usability		+++	++	++	
Total		H	9	10	
Total points		43	44	43	

G.E.O.S. INGENIEUR-

Thank you for your attention!

The authors would like to thank the **EU and National funders AKA, ANR, BMEL and FORMAS** for funding, in the frame of the collaborative international consortium AgriAs financed under the ERA-NET Cofund WaterWorks2015 Call. This ERA-NET is an integral part of the 2016 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI)

SUOMEN AKATEMIA FINLANDS AKADEMI ACADEMY OF FINLAND Bundesministerium für Ernährung und Landwirtschaft

AGENCE NATIONALE DE LA RECHERCHE

FORMAS

