

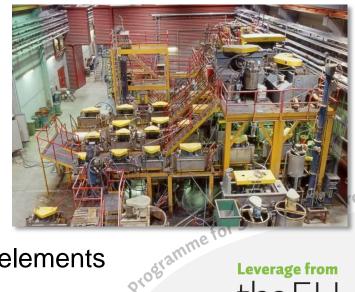
Mineral processing techniques for eco-efficient utilization of mining wastes Examples from the KaiHaMe project

<u>A. Taskinen</u>, T. Korhonen, N. Heino, M. Lehtonen, M. Tiljander, P. Kauppila

Geological Survey of Finland

12.10.2017

Centre for Economic Development, Transport and the Environment



European Union European Regional Development Fund

Mineral processing and materials research at GTK

- Outokumpu
 - Process mineralogy
 - Mineral processing at bench and pilot scale
- Espoo
 - Mineralogy
 - Isotope geology and trace elements

A. Taskinen et al.

12.10.2017

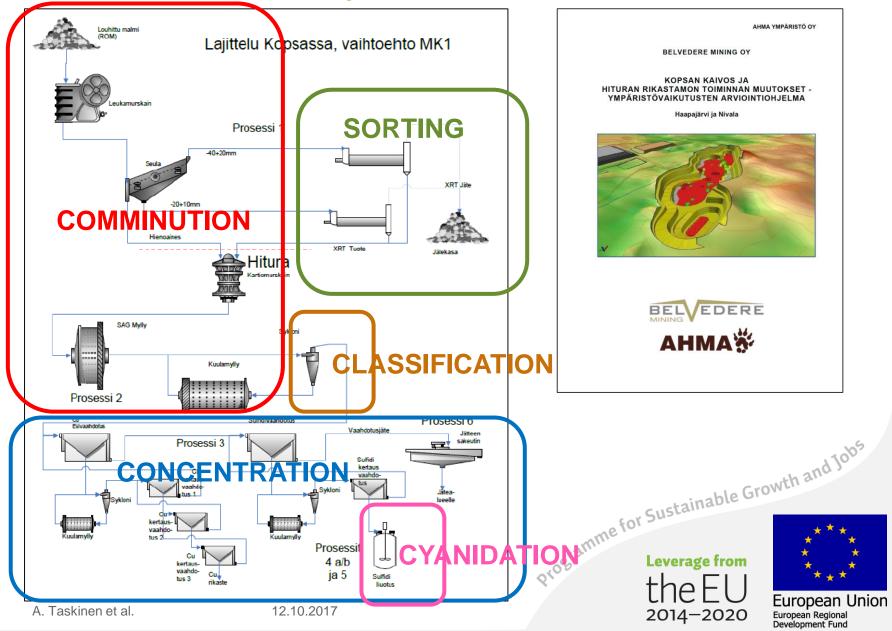

European Regional Development Fund

Leverage from

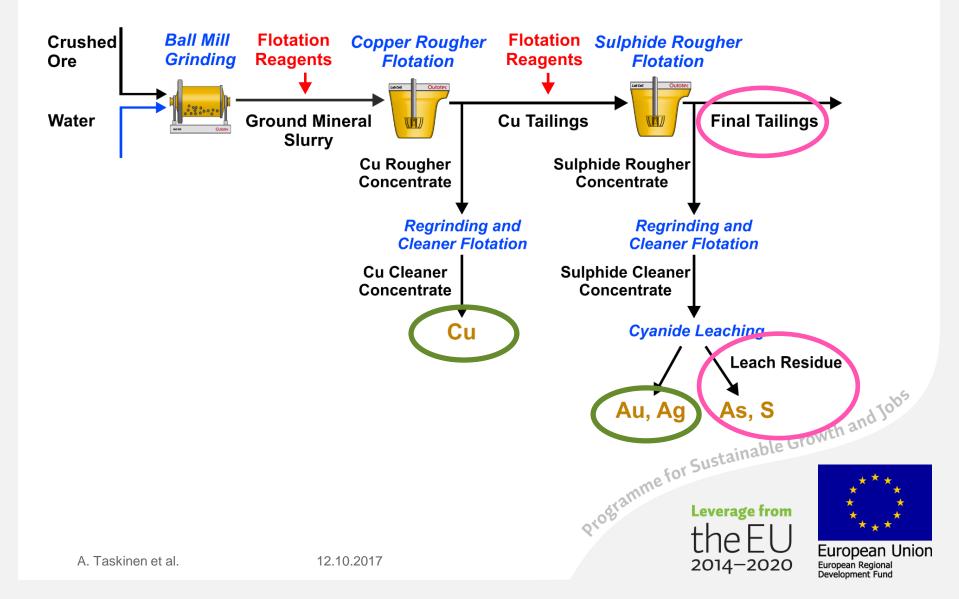
2014-2020

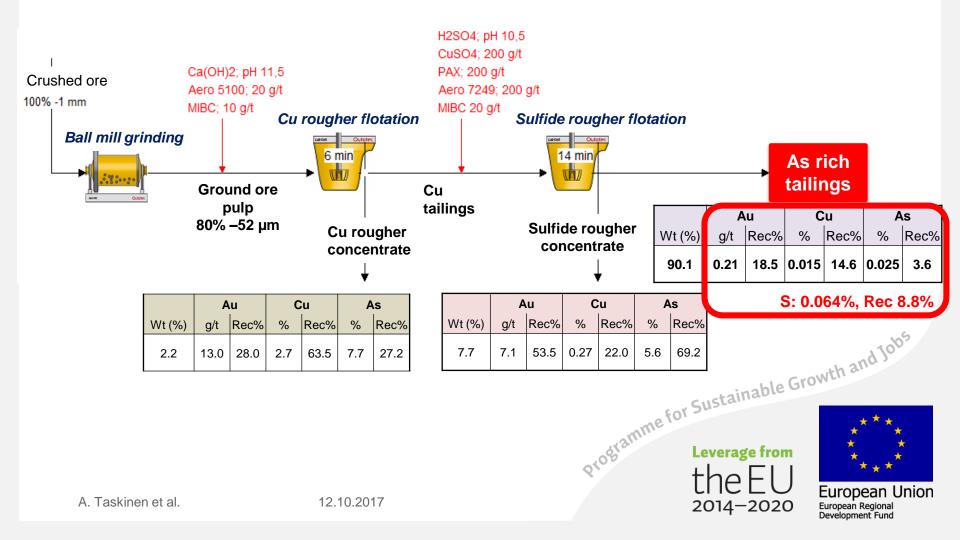
Objectives in the KaiHaMe project (WP3)

- To reduce harmful components such as arsenic and sulfides in gold ore tailings
 - \rightarrow Smaller volume of disposed hazardous waste
 - \rightarrow More usable material, e.g., for earth construction at mine site
- To increase recovery of valuables such as gold and • copper of excavated ores
 - \rightarrow More economic mining process
 - \rightarrow Smaller amount of disposed tailings
 - \rightarrow Tailings less harmful for the environment



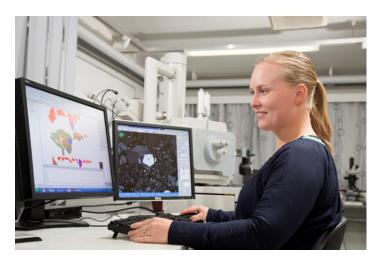
Kopsa gold deposit

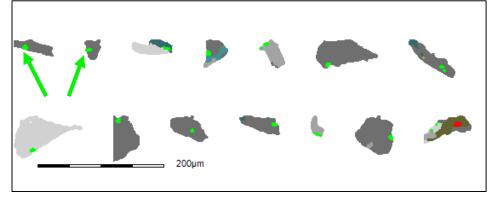

- Porphyric Au-Cu-(Ag) deposit in Western Finland
- 13.6 Mt of ore with 0.81 g/t Au, 0.15% Cu and 2.15 g/t Ag
- Main sulfide/ore minerals: arsenopyrite, chalcopyrite, pyrrhotite and löllingite
- Mineralization contains elevated As (0.1– 0.2%)
- Mining operations were under planning by Belvedere Mining Oy but the company went bankrupt in 2015


Process flowsheet by Belvedere

Simplified flowsheet for beneficiation

Beneficiation test following the original flowsheet (sorted ore)


How to decrease concentration of valuables (gold, copper) and harmful elements (arsenic, sulfur etc.) in the tailings?



Detailed process mineralogical data is a prerequisite for rational planning a more ecoefficient process

- Minerals and their amounts
- Trace elements in minerals
- Grain sizes of various minerals
- Etc.

Ex. Chalcopyrite in +45 μ m particles of the tailings

A. Taskinen et al.

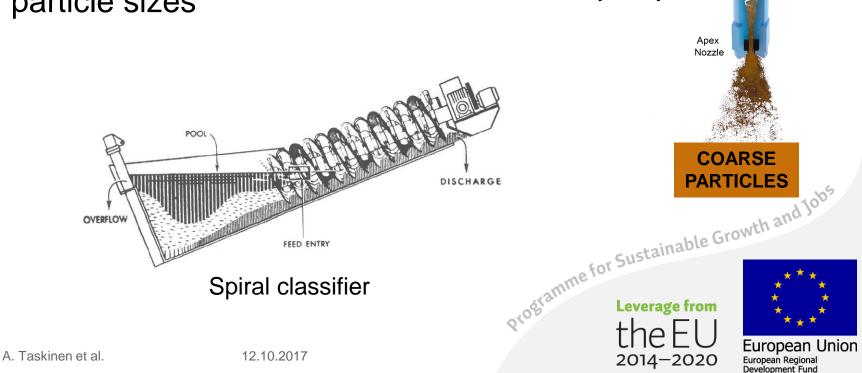
12.10.2017

Example: As mineralogy in Kopsa ore and tailings

Sorted ore

Mineral	-20 µm (%)	20-45 µm (%)	+45 µm (%)	All sizes (%)
Silicates	95.4	96.2	97.0	96.0
Arsenopyrite	1.76	1.81	1.33	1.71
Arsenate	0.06	0.03	0.01	0.04
Löllingite	0.00	0.03	0.00	0.01
Other sulfides	1.25	0.87	0.78	1.01
Gold				1.0 g/t

As rich tailings


Mineral	-20 µm (%)	20-45 µm (%)	+45 µm (%)	All sizes	
Silicates	98.4	99.1	99.1	98.8	
Arsenopyrite	0.04	0.00	0.00	0.02	
Arsenate	0.04	0.02	0.01	0.02	Gro
Löllingite	n.d.	n.d.	n.d.	n.d.	
Other sulfides	0.15	0.05	0.08	0.09	
Gold	0.09 g/t	0.22 g/t	0.28 g/t	0.18 g/t	m
A. Taskinen et al.	12.10.	2017		LI IC L C 2014–202	0

Classification/sizing

- Separation of particles by size
- Can be used as a way to separate harmful elements from tailings if they are distributed unevenly in various particle sizes

FINE PARTICLES

FEE

Hydrocyclone

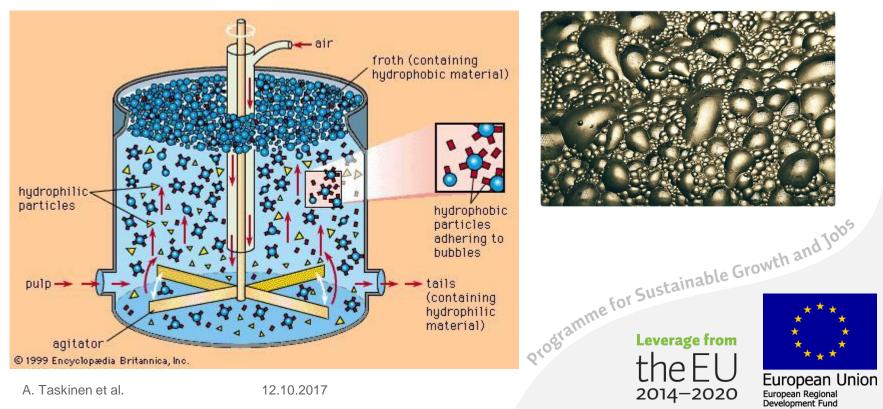
Fluted Vortex Finder

Example: Classification of Kopsa As rich tailings

• Separation of fine particles (slime) from As rich tailings

	As rich					
	tailings	Laminar		–15 µm	15–25 µm	+25 μm
Cu (%)	0,014	decantation	Cu (%)	0,017	0,009	0,014
As (%)	0,030		As (%)	0,068	0.013	0,016
S (%)	0,053		S (%)	0,062	0,027	0,047

Programme for Sustainable Growth and Jobs


2014-2020

European Union

European Regional Development Fund

Froth flotation

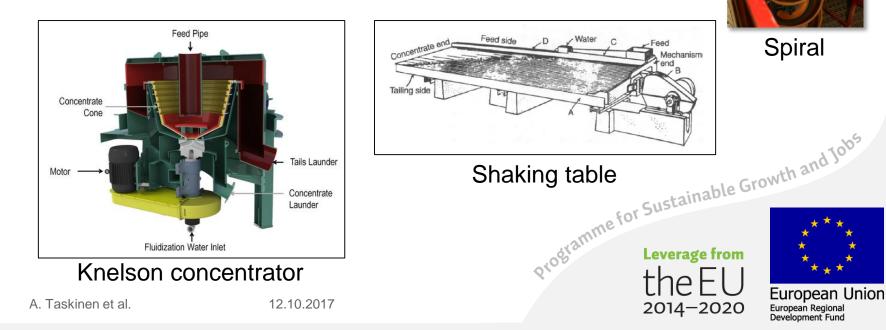
- The most versatile method to separate mineral particles from each other
- Based on hydrophobicity differences between minerals.
 The differences are increased by using chemicals.

Example: Regrinding and flotation of tailings

	Tailings (P ₈₀ ≈ 44 µm)
Cu (%)	0,011
As (%)	0,020
S (%)	0,037

Regrinding Chemicals		Tailings (P ₈₀ ≈ 28 µm)	
Flotation	Cu (%)	0,010	
	As (%)	0,010	
	S (%)	0,023	
		1	obs
	cust	ainable Growth and	
0 ⁶¹³	mme for Suc	ainable Growth and T rage from e.FU	**
8.	th		

2014-2020

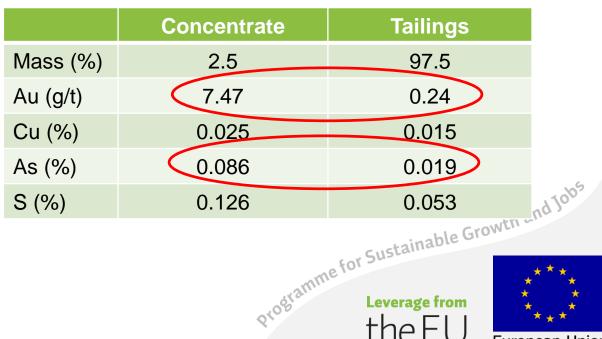

European Union

European Regional Development Fund

12.10.2017

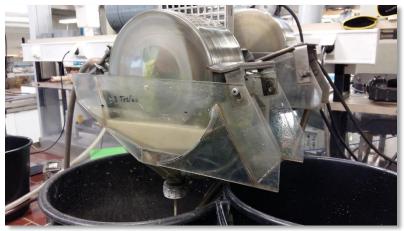
Gravity separation

- Increasingly used to recover heavy minerals in flotation tailings
- Based on specific gravity differences between minerals
- Relatively simple and cheap techniques
- Centrifugal concentrators can also treat very small particles (~10 µm)



Example: Knelson concentration of As rich tailings

3" Knelson concentrator at GTK Mintec



Development Fund

12.10.2017

Magnetic separation

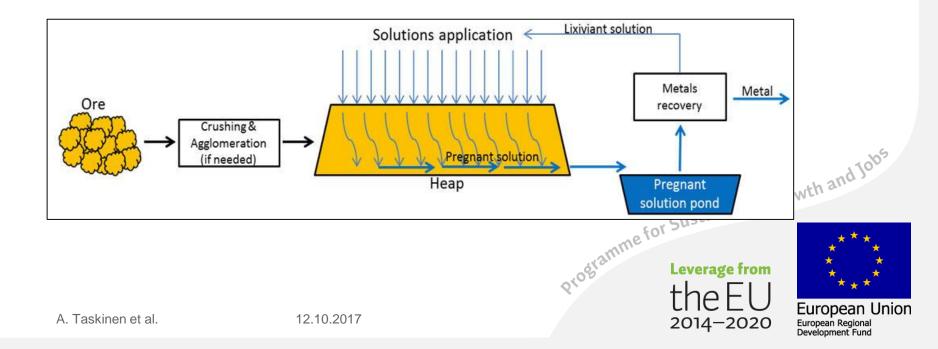
- Exploits the difference in magnetic properties between minerals
- Low-intensity separators used to concentrate ferromagnetic minerals (magnetite) mainly
- High-intensity and high gradient magnetic separators used to • separate weakly paramagnetic minerals (e.g., rare earth minerals)

Wet low-intensity magnetic drum separator at GTK Mintec

12.10.2017

Example: HGMS separation of flotation tailings

B = 1 tesla	Feed	Mags	Non-mags		5		
Mass (%)	100	45.6	54.4				
Cu (%)	0.010	0.017	0.005				
As (%)	0.011	0.018		0.005			
S (%)	0.019	0.032		0.008			
Fe (%)	2.33	4.72	0.33				
Fe (%) 2.33 4.72 0.33							
	8,	thef	-1	- *	<u></u>		


High gradient magnetic separator (HGMS) at GTK Mintec

2014-2020

Hydrometallurgical methods

- Operationally quite uncomplicated and robust
- Frequently the most preferred option for re-treatment of tailings
- Heap leaching, tank leaching, bioleaching,...
- After leaching, the metal ions are recovered from the leach liqour
 - Precipitation, cementation, solvent extraction, electrowinning,...

Conclusions

- There are several mineral processing techniques that may be suitable for re-treatment of tailings
- Regrinding followed by flotation and HGMS seems one of the best options to decrease harmful components in the Kopsa tailings and increase its raw material value
- Economy of reprocessing needs to be evaluated with Junent Jobs respect to acquired benefits in the waste management

Thank you for your attention!

Contact: antti.taskinen@gtk.fi

Lever ge i om the EU 2014–2020

in protos

Mining Waste Management Methods