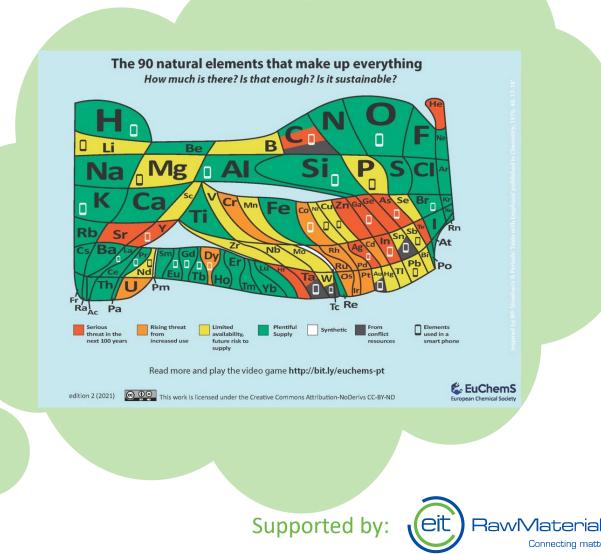


Testing recovery of a metal from a sample material in laboratory scale at UEF

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation



JMA/3.12.2021

Content of the presentation

- Characterization of available sample(s)
- Selection of recovery method(s) for laboratory tests
- Testing element recovery in laboratory
- Analytical chemistry possibilities at UEF

This activity has received funding from the European Institute of Innovati Technology (EIT), a body of the European Union, under the Horizon 2020, the Framework Programme for Research and Innovation

Examples of sample material(s)

Aqueous solutions:

- Process waste solutions
- Seepage waters
- AMD...

Solids:

- Process wastes
- Tailings sands
- Water treatment sludges
- Ores

• (E-wastes, Ashes...)

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

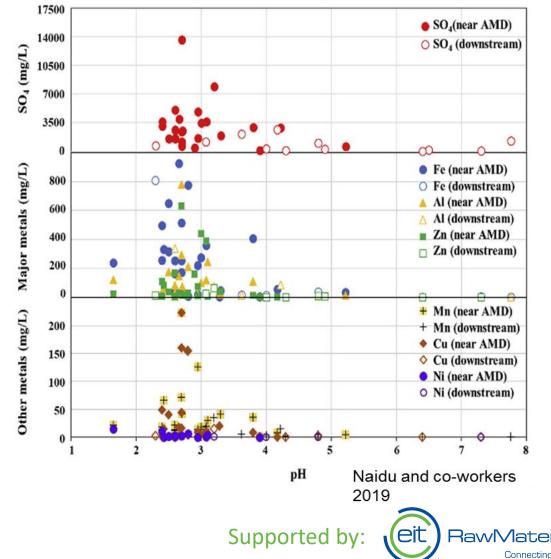
What should we know from available sample material?

Characterization of available sample(s)

- Representativeness of the sample source
- Elemental composition
- Presence of toxic/harmful substances
- Element of interest: dissolved precipitated embedded in crystals or crystal structure
- Stability
- Variation of composition
- Special features, pH, particle size...

Generally: "The more you know the better"

How much there is an element of interest for recovery? What else sample material contains?...



Selection of recovery method(s) for laboratory tests

- Valuable elements exist often in significantly lower concentration compared to major metals.
- It is hard to selectively separate scarce elements from dominant metals.
- Seepage water/AMD or solid material may be chemically unstable – e.g. oxidation, crystal growth, microbes ...

Selection of recovery method(s) for laboratory tests

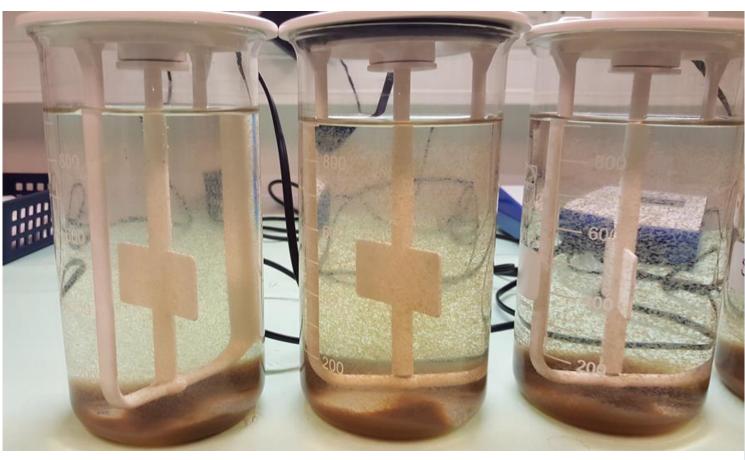
- Element of interest may be part of several chemical compounds and/or embedded in crystals.
- Selective precipitation or adsorption.
- Partial leaching vs. total dissolution.
- No additional harmful waste.
- Cheap basic chemicals & simple process.

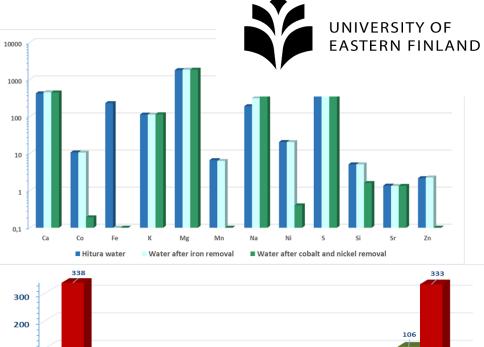
→ Strategy how to try to recover element of interest

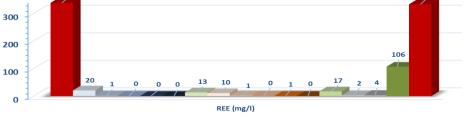
Precipitation, adosrption, leaching, solid/liquid separation...

Testing recovery in laboratory

Chemicals needed, unit processes needed, pH, temperature, L/S ratio, reaction time, sample matrix, impurities...


This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation


Supported by:



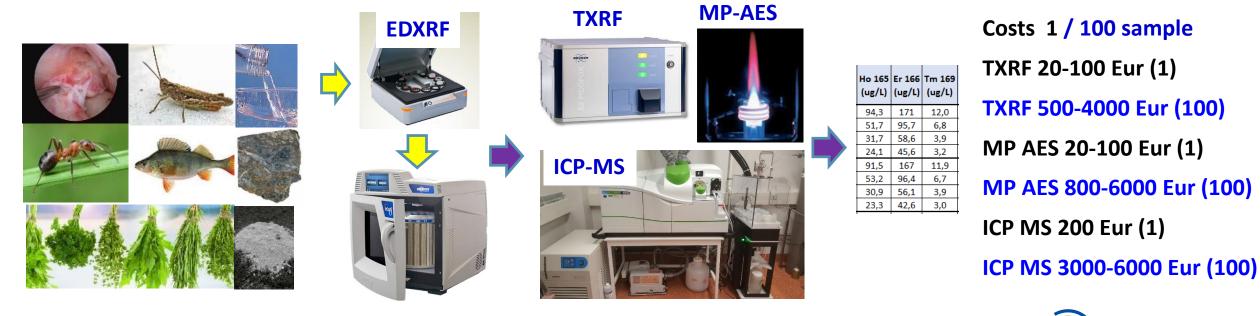
eit


Testing recovery in laboratory

10-a3 ■ 10-a4 ■ 10-a5 ■ 10-a6 ■ 10-a7 ■ 10-a8 ■ 10-a12 ■ 10-a15 ■ 10-a16 ■ 10-a17 ■ 10-a18 ■ 10-a19 ■ 10-a20 ■ 10-a21 ■ 10-a22 ■ 10-a23 ■ 10-a24

eit

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation


Supported by:

Analytical chemistry at UEF – elements:

- Elements from Li to U down to ppt level if needed.
- Variable matrix from living organisms to rocks.
- Costs depending on case and number of samples.

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

Supported by:

Analytical chemistry at UEF – organic compounds:

 Identification and quantification of organic compounds, e.g. xanthates, either from bulky compounds or from environmental samples down to ppm level.

Costs 1 / 100 sample NMR 400 Eur (1)

NMR 2 000-10 000 Eur (100)

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

$ \begin{array}{c} \mathbf{A} \\ \overset{s}{\longrightarrow} \overset{\kappa^{+}}{\overset{or}{\operatorname{or}}} & \overset{s}{\longrightarrow} & \operatorname{SEX} \\ \overset{s}{\longrightarrow} \overset{s}{\underset{S^{-}Na^{+}}{}} & \overset{s}{\longrightarrow} & \operatorname{SEX} \\ \overset{s}{\longrightarrow} \overset{s}{\underset{SIBX}{}} & \overset{s}{\underset{SIBX}{}} & \overset{s}{\underset{SSAX}{}} \\ \overset{s}{\longrightarrow} \overset{s}{\underset{SSAX}{}} & \overset{s}{\underset{SSAX}{}} \\ \overset{s}{\longrightarrow} & \overset{s}{\underset{SSAX}{} \\ \overset{s}{\overset{s}{\longrightarrow} & \overset{s}{\underset{SSAX}{} \\ \overset{s}{\overset{s}{\longrightarrow} & \overset{s}{\underset{SSAX}{} \\ \overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}$	B 					
	Compound	Concen mmol/l	tration mg/l	Percentage (mol-%)		
	PAX	13.5	2739.0	73.3		
	SSAX	2.9	540.4	15.7		
	SIBX	1.1	188.4	5.9		
	SEX	0.6	88.1	3.3		
L.	SIPX	0.3	51.3	1.8		

Supported by:

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation