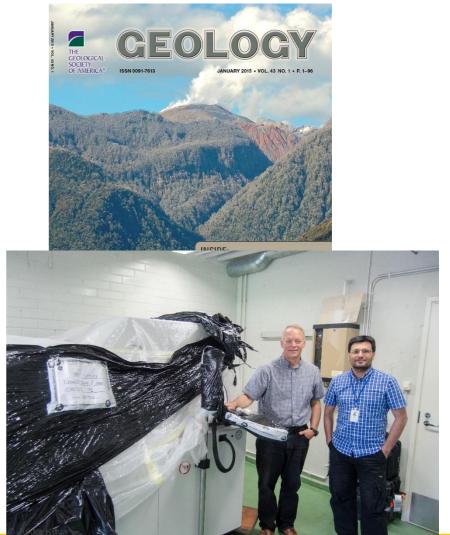

X-ray tomography at GTK

- What is the new device and what can it do?
- XCT launch meet 9.11.2017

X-ray tomography - principles

- Sample is rotated and projections are recorded from all sides
- Projections can be reconstructed into a 3D absorption coefficient map
- Essentially a 3D density map
- Non-destructive


Existing tomography devices in Finland

- Stora Enso, JYU and UTU were first
- Now devices at least in
 - Helsinki
 - Tampere
 - Kuopio
 - Oulu
- 6 Bruker Skyscan (1072, 1172, 1272)
- 3 Zeiss Xradia (microCT-400, nanoCT)
- Several PET/CT
 devices

How and why was the GTK device acquired?

- 2013 Sayab Muhammad joins GTK
 - Idea about investigating rock morphology with XCT
 - First sample scanned at Helsinki University
 - Sayab, et al., High-resolution X-ray computed microtomography: A holistic approach to metamorphic fabric analyses. *Geology* 43 (1): 55-58 (2015)
- 2014 a talk about using XCT to decipher microstructures
 - Interest within GTK
- Academy application within the RAMI network
 - 2015 funding granted
 - 2017 device installed

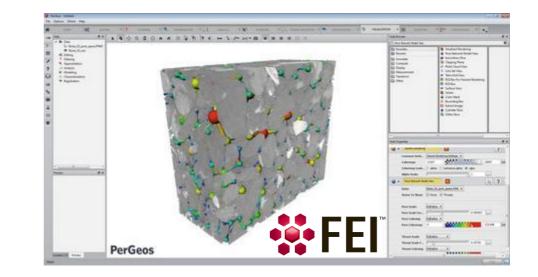
GE phoenix v|tome|x s 240

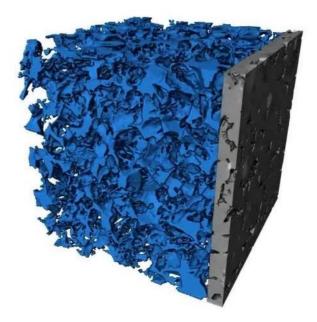
- Manufactured in Wunstorf, Germany
- 240 kV / 320 W microfocus tube
 - Most powerful in Finland!
- 180 kV / 15 W nanofocus tube
- 400×400 mm² 4 Mpix detector

GE phoenix v|tome|x s 240

- 240 kV / 320 W microfocus tube
 - Resolution up to 5 µm
 - Allows imaging of complete drill core samples
- 180 kV / 15 W nanofocus tube
 - Resolution up to 900 nm
- 400×400 mm² 4 Mpix detector
 - Max. sample size 26×41 cm² / 10 kg
 - FOV width = 2000 pix
- fast|scan module
 - Along with high power enables short scan times when necessary (<30 min)

Deben sample stage

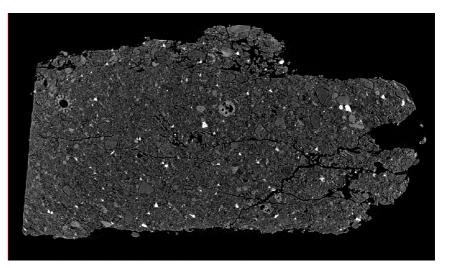

- Compression and tension
 - Force up to 5 kN
 - Displacement up to 10 mm
- Cooling and heating
 - Peltier elements at both ends of the sample
 - Elements controlled independently
 - -20 to 160 °C

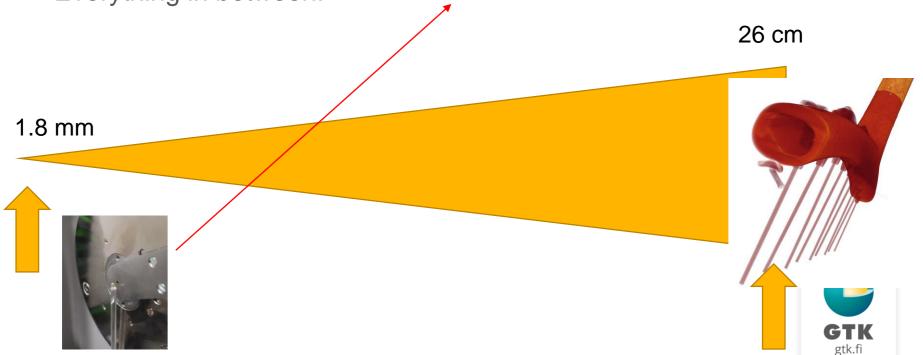


gtk.fi

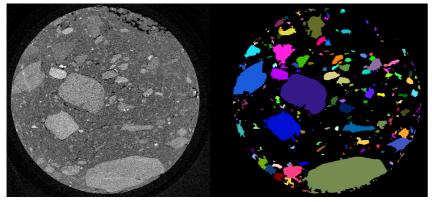
FEI PerGeos

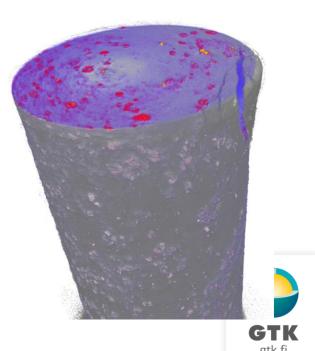
- Powerful tool for image processing
- Noise filtering
- Segmentation
 - Watershed reduces
 operator-dependency
 - Recipes increase
 efficiency
- Analysis
 - Grain orientation
 - Pore size distribution
- Visualization



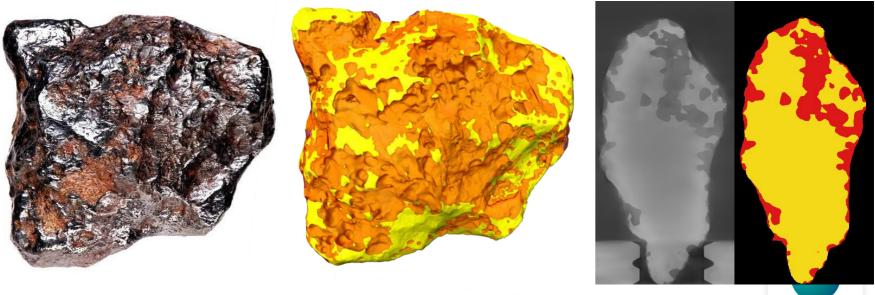


Sample sizes


- Diameter 1,8 mm for best resolution
- Max. Diameter 26 cm and height 41 cm
- Everything in between!



Applications

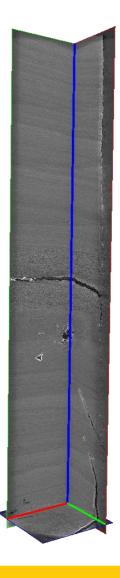

- Grain orientations of gravel samples through the sample holder
- Orientation analysis for high density inclusions
- Lake sediment layer analysis through the sample holder
- Non-destructive imaging of invaluable samples
- Before after analysis for rock fractures
- 3D shape inspection

Case: Lieksa iron meteorite

- First iron meteorite found in Finland
- Max. thickness 6,6 cm, mostly Fe-Ni compound
- 220 kV / 48 W: Inner structure along with volumetric fractions of iron and silicate phases – unattainable by any other method

Case: Suaspalo gravel orientations

- Gravel samples inside a plastic tube
- Traditionally orientation is determined by hand from at least 100 rocks
- Tomographic investigation takes a few hours
 - Orientation determined from thousands of rocks



Case: Nurmijärvi lake sediment

- Lake sediment samples in a plastic tube
- Traditional analysis is manual and time consuming
- Tomographic investigation can be done with a rate of 30 cm / h.

What's ahead?

- More users we want to expand the userbase as much as possible
- More sample variety main focus is on geological samples, but we want to explore the capabilities of the device
- Method development, user development Moving forward through advanced userbase, increased sample variety and networking (FinTomo)
- Better tomography

Thank you!

