

Energizing the core

Kaj Jansson

Mine Water Management and Treatment 24-25.9.2013 Kuopio

Content

- Background & drivers
- Active mine treatment
- Reuse
- Summary

Mining activities and increasing water stress

Challenges in mining water mining

- Water supply & balance: Positive or negative water balance
 - Negative => water scarcity
 - Positive => discharge treatment / water management needed
- Water mgmt: Reuse for improvement water management and energy savings
 - Reduction of total water volumes
 - Reduction of CAPEX and OPEX
 - Effect of raw water quality to the process efficiency
 - New online monitoring / analyzing needed

- Volumes, Fine particles, Arsenic, Cyanide compounds, Ammonium, Nitrate, Sulfur (especially SO₄),
 Selenium, TOC/COD and Metals: Cd, Cu, Ni, Pb and Sb
- **Metal recovery:** Mine tailings are known metal reserve, that can be turned to revenue streams
 - Tailings must be treated and discharged appropriately
 - Process optimization to maximize metal recovery and profit
- Environmental legislation
 - Getting just stricter

Mine Water Balance leads to WQM Strategies

- Very few mines have Zero Water Balances
- Negative water balance (e.g. Chilean mines)
 - Strategy: source & conserve
 - Desalination or grey water supply
 - Seawater for process use
 - Reclaim / reuse
 - Tailings dewatering
 - Dry stacking
 - Storm water Collection and use
- Positive water balance mines (e.g. Scandinavian mines)
 - Strategy : Dispose
 - Tailings pond water treatment and reuse
 - Salt disposal
 - Trace contaminant removal
 - Storm water management and disposal

Majority of concentrator processes today...

Key drivers of treating mines waters

- EU Dangerous Substances Directive
 - requires consented discharges for all sites abandoned after 1981 where the minewater contains listed substances
- EU Groundwater Directive
 - requires consented discharges from mine waste where leachate contains listed substances
- Contaminated Land Regulations (EU country specific)
 - requires remedial action where a significant pollutant linkage is identified

Todays drivers

EU Water Framework Directive

- Consolidates a number of directives, including the dangerous Substances and Groundwater Directives.
- Environmental objectives will need to be set for ALL water bodies in terms of chemical and ecological quality.

EU Mining Wastes Directive

 Will require exchange of technical information on best available techniques with a view to developing methods to identify and remedy "closed waste facilities"

Active mine water treatment - Terms

- Acid Mine Drainage (AMD)
 - Water that is polluted from contact with mining activity
- Acid Rock Drainage (ARD)
 - Natural rock drainage that is acidic
- Pyrite weathering
 - $4\text{FeS}_2 + 14 \, \text{H}_2\text{O} + 15 \, \text{O}_2 \rightarrow 4\text{Fe}(\text{OH})_3 + 8 \, \text{SO}_4^{2-} + 16 \, \text{H}^+$
- Results in
 - Increased acidity = decreased pH
 - Increased metal concentrations
 - Increased sulfate
 - Increased suspended solids

Active Mine Control Strategies

- Active treatment
 - Requires long terms and continuous treatment
 - For big volumes and loads
 - Very successful
- Passive treatment
 - Less expensive (CAPEX)
 - Less operation intensive (OPEX)
 - Not as effective as active
 - For small volumes, loads and big spaces
 - Can be used to complete active treatment
- * Acid load refers to acidity (mg/l) * Q (l/s) * 0,0864

- #1.Minimize iron sulphide oxidation
 - by limiting O2 concentration
 - Surface lining (the walls)
 - Inhibit or displace iron oxidizing bacteria
 - Keeping reductive conditions
- #2. Improve surface and ground water management
- #3 Treat the residual water.
 - within the mine

Removal of impurities in waters

Sedimentation

- Physical (Drinking water quality)
 - Membranes
 - Removal of ions + colloids
 - Drawbacks
 - Concentration handling
 - Energy needs
 - Possible fouling (Ca, SO₄), OPEX
 - Pretreatment needed (RO)
 - Evaporation
 - Removal of ions + colloids
 - Benefits
 - Big volumes
 - Can be used to crystallize impurities
 - "No stop process"
 - Drawbacks
 - Energy consumption

- Biological (anaerobic)
 - Removal of SO₄ and metals (sulphide precipitation) to very low levels
 - Benefits
 - Relatively low CAPEX
 - Removal of SO₄ to S⁰ possible (typically S²⁻)
 - Recovery of metals (needs S²⁻) & byproducts
 - Can handle large flows
 - Low energy needs
 - Small waste generation
 - Drawbacks
 - Slow
 - Sensitive to influent variations (load, pH, mV, uS) and temperatures
 - Needs C source (and N, P)

- Adsorbents / Ion exchange (Drinking water quality)
 - Removal (and recovery) of specific metals from streams to very low levels
 - E.g. Ni, Cu, Fe, U, As
 - Mainly as polishing step
 - Organic polymer resins, GAC, FeOOH.
 - Benefits
 - Specific ion removal with high removal rate removal
 - Can be valuable concentrate/ adsorbent mass
 - Removal target can "easily" be changed
 - Drawbacks
 - Needs pretreatment (also to to reduce regeneration of the resin)

Chemical

- Neutralization
 - Of acidic pH and removal metals (oxidation)
 - Recovery of metals (sulphite)

Ettringite

 Removal of SO₄ plus major part of the of the metals (as hydroxide)-"adjustable"

Benefits

- Fast and good performance regardless of the seasonal variations
- Easy to apply & control

Drawbacks

- Sludge volumes generated
- pH sensitive

REUSE

25.9.2013 Outotec Outotec

Closing the water loop – what kind of water is needed

ncreasing process disturbance

Fresh Water Usage

Summary – reuse and

- Don't mix the clean water with dirty one
- Reduce the water volumes as much as possible
- Always treat the effluent as close to the place it is generated
- Keep simplicity and robustness in mind
- FOCUS to improve our mineral & metals industry to world class
- Environmental legislation will just get stricter

