Environmental characterisation and mine water monitoring

Päivi Kauppila

GTK

Mine Water Management and Treatment – From Planning of Mine Operations to Mine Closure
24. – 25.9.2013 Technopolis, Kuopio Auditorium
Content

• Need and content of a baseline study
• Characterisation of mining wastes – potential sources of mine drainage
• Water quality monitoring during mining activities
• Post-closure water monitoring
• Focus on mine waters
Before mining / Baseline study (1)

- Studying the natural state / baseline of the proposed (exploration/) mine site and it’s surroundings is needed to:
 - define requirements and pre-conditions set by the environment of the mine site for the implementation and the methods of implementation
 - define the baseline to observe and assess potential environmental impacts of the activities
 - e.g. quality of waters, soils and sediments, biota; water levels
Baseline study (2)

• Is needed to:
 – plan placement of mining and processing activities
 • Quaternary deposits, groundwater aquifers, catchments
 – to design management actions
 • e.g. detailed mapping of the type and structure of Quaternary deposits, groundwater conditions and bedrock properties in proposed waste disposal areas
 • e.g. carrying capacity of the downstream water bodies – water treatment requirements
 – to define objectives for mine closure
Baseline study (3)

- Should be made latest before any larger changes to the site
 - Smaller scale before exploration
 - More detailed and large scale before initiating preparations for mining
- Is the basis for the EIA
- Should include all parameters
 - on which mining activities may have an impact
 - e.g. complete water chemistry of waters
 - that may be significant with regard to the generation of impacts
 - e.g. hydrogeology properties of the site
Overall content of the baseline study

• Climate
• Landscape, topography, land use
• Socio-economic factors
• Natural landscape, nature, biota
• Conservation areas and sites
• Geology and geochemical baseline
• Waters and their quality
 – Seasonal changes should be included
 – Upstream, downstream of the mine site
 – Complete water geochemistry
• Air quality
• (Characterisation of waste)
Characterisation of mining waste-Requirements in legislation (1)

• Potential waste types:
 – waste rock, tailings, overburden
 – mineral precipitates
 • from water treatment,
 • from mineral processing
• Characterization is needed for the
 – EIA, and
 – the environmental permit application
 • waste management plan
 – during operation as part of emissions monitoring
 – for closure planning of waste facilities
• Waste legislation: requirement to decrease the amount of waste
Characterisation – Requirements in legislation (2)

- Government Decree on Extractive waste (GD 190/2013)
 - amendments to existing Acts and Decrees
- Characterisation should include/define:
 - background data of the:
 - mining and milling processes
 - exploited ore deposit,
 - the processes generating the waste, the type and amount of the waste material, and the chemicals used in the processing,
 - geotechnical behaviour of the waste, and
 - geochemical properties and behaviour of the waste.
Characterisation of mining wastes

• Why characterisation is needed?
 – During and after mining, wastes are potential sources of mine drainage
 • Properties affecting surface water or groundwater quality are important
 – To evaluate optimal use of mineral materials (eco-efficiency) – decreasing the amount of waste
 – To evaluate future drainage quality
 • Long-term chemical alteration of the waste
 – To design disposal facilities and their closure
Characterisation of mining wastes

Geological description of ore deposit

Sampling and pretreatment

Mineralogical and chemical composition ± chemical residues

Geotechnical characteristics (tailings, mineral precipitates)

Determination of acid-generation potential

Assessment of the solubility of harmful substances

Assessment of the risk of major accident for the waste area

Non-sulphide mining waste

Sulphide mining waste

Fe-sulphide mining waste

Inert waste

NP/AP < 3 and S < 1%

NP/AP > 3 and S > 1%

S < 0.1%

S > 0.1%

Kauppila et al. 2013: BEP in Metal Ore Mining
Characterisation methods (1)

• Mineralogy
 – Sulphide minerals and other acid producing minerals, neutralising minerals, potential contaminant sources
 – Optical microscopy, SEM + MLA, XRD

• Chemical composition
 – Potential contaminants (including processing chemical residues) and solubility of harmful substances (metals, oxyanions, salts)
 – Total methods: XRF, total extraction method
 – Solubility: e.g. selective extractions, leaching test, percolation test
 • Also: chemical analysis of process water from concentration tests
Characterisation methods (2)

- Potential to produce acid mine drainage (AMD)
 - Acid production potential (i.e. NP vs. AP)
 - Static tests (e.g. CSN EN 15785, NAG-test)
 - Calculation based on carbonate C –content vs. sulphide S –content
 - AMD quality in long-term
 - Kinetic test methods (e.g. Humidity cell tests)
 - Drainage from waste material of similar ore types with similar processing (analogues)
Water quality monitoring during mining activities (1)

• Operational monitoring
 – Performance of the water treatment systems
 • e.g. active systems, overland flow areas, wetlands

• Emissions monitoring
 – Quality of emissions from operations
 – Process water, dewatering water from the mine workings, seepage waters from the waste facilities
 • Main metals, pH, SO$_4$, N-emissions
 • Toxicity of waste waters (SFS-standards)
 – Sanitary waters
 • T, O$_2$, pH, EC, COD$_{Cr}$, BOD$_7$, TP, TN, NH-N$_4$, bacteria, suspended solids
Water quality monitoring during mining activities (2)

- Environmental impact monitoring
 - Impacts of mining on environment
 - Surface waters
 - the physico-chemical conditions,
 - biological monitoring of surface water
 - monitoring of fish populations and fishing
 - and the monitoring of (aquatic) sediment composition
 - Groundwaters
 - Groundwater monitoring wells, household wells and springs at the mine site and in its’ surroundings
 - Physico-chemical quality and level of the groundwater table
Water quality monitoring during mining activities (3)

• Important!
 – Complete water chemical analysis e.g. once a year
 – Site-specific
 – Should include all potential contaminants
 • process chemical residues
 • residues from explosives
 • those from ore deposit / waste material
 – Monitoring points should be located in potential flow routes of mine drainage
Water quality monitoring during mining activities (4)

• Important!
 – Seepage quality of the waste piles
 – Field measurements + filtration of the samples in the field
 – On-line monitoring
 – Processing and follow-up of the monitoring data
 • actions if negative changes observed
Post-closure water quality monitoring (1)

• To ensure that the mine site poses no environmental or health risks
• To ensure the performance of the closure structures, and to facilitate rapid detection and response in case of failure
 – Waste facilities
 • Seepage water volume and quality
 – Open pit / underground mine
 • Flooding, water quality, discharge quality
 – Water treatment systems
 • Minimum: Inflowing water, out flowing water
Post-closure water quality monitoring (2)

• To monitor the impact on the environment
 – Surface water and groundwater quality at the mine site and its’ surroundings
 – Both upstream and downstream from discharge points
 – Similar parameters to monitoring during active mining

• Site-specific requirements
 – Monitoring programme to be accepted by environmental authorities