
Two mine cases

- Kotalahti, a closed Cu,Ni-mine
 - Operating time 1957-1987
 - Kotalahti intrusion was about 1,3 km long,
 200 meters wide and 1 km deep.
 - Mine area is about 100 ha.
 - Located in Eastern Finland, community of Leppävirta
 - After care has been done since the mine was closed
 - Total water volume of the mine (including shafts) is estimated about 3 million m³.
- Vammala's concentration plant

Kotalahti, aerial photo 2013

- Lot of studies and test operatios of mine water management to obtain the environmental limiting values.
- In 2010: a new direction of mine water and construction of wetland
- Environmental permit set the limits to the discharging water from the mine site:
 - Suspended solids ≤10,0 mg/l
 - Fe ≤ 2,0 mg/l
 - Ni ≤1,0 mg/l
 - pH 6 -9
 - These limiting values should not exceeded.

In 2010: a new direction of mine water and **construction of wetland**

- In 2011 a new channel for cleaner water was constructed
 - To cleaner water
 - Iron oxidation and precipitation to the bottom of the previous channel → Fe-load will diminished to the nearest water system Oravijoki

- In winter 2011-2012 testing an oxidizing treatment in Mertakoski pond to oxidize iron.
 - Didn't work.

- Water treatment plant
 - ca. 100 meter long and 10 meter wide
 - three different funtional parts:
 - 1) dry filter (crushed calcite product), which increase the pH (Ni).
 - 2) Slowing filter-part middle of the treatment plant to settling down the suspended solids (in the spring time the flow can be too high)
 - 3) Chrushed stone above and peat-layer under to precipitate iron.
- All these actions helped the treatment plant to work properly
 - Iron precipitation get better
 - Water quality has reached the environmental limiting values
 - Fe ≤ 2,0 mg/l
 - Ni ≤1,0 mg/l (almost)
 - pH 6 -9

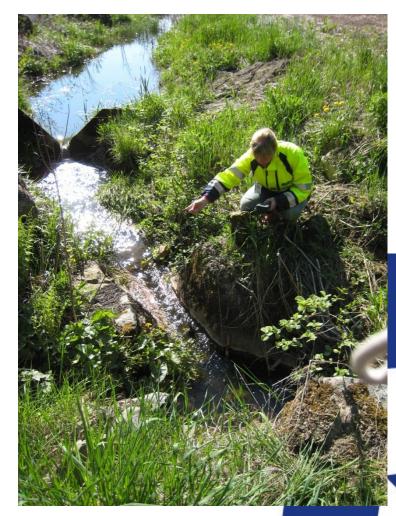
Vammala concentration plant and tailings area

- Located in the Sastamala region in southern Finland
 - Au-ore ca 200,000 tonnes/year
 - ca. 94 % is tailings material
 - Process need water about 1 million m³/year
- Ni,Cu-Ore mining starts in1960's
- Ni,Cu-ore enrichment 1975-1995
- Au-ore enrichment 1994-2003 and from 2007
- Tailings area (in 2012)
 - Ca. 5,7 Mt tailings material from Ni-Cu-ore
 - Ca. 1,1 Mt tailings material from Au-ore enrichment
 - Average depth is 11 meter
 - Au-ore tailings material about 1,5-2 meter

Vammala – The concentration Plant, aerial photo 2011

Vammala process plant – water circulation

- Process water from the plant
 - There is four different pump stations
 - Two in plant area
 - One in river Ekojoki
 - One in an old, underground mine
 - Water (to the process) is taken from the underground mine
 - From the process, water is pumped to the tailing area → clarification pond → clarified water goes back to the process via pumpstation in Ekojoki
- Drainage water from the plant area flows to the nearest ditch → pump station → tailings area
- Seepage water of tailings area, partly collect via pump station (when water level is high enough) → back to the tailings area. Meanwhile water flows to the Kovero-oja



Vammala process plant – tailings environmental impact

- Concern of the nickel and sulfate load to the surrounding water system
 - → seepage water study
 - water quality and impacts of the tailings area
- Seepage water study in 2012
 - Dissolved and total element concentration
 - pH, EC, redox, temperature, oxygen
 - Water flow directions
 - Wetlands around the tailings area
 - Sediment study (elemental)

Some results of the seepage water study

- Wetland areas surrounded the tailings area and iron was mostly precipitated in wetlands sediments.
- Sediments elemental concentration were higher close to the tailings area than the natural surrounding area

Fe: 2- to 7-fold higher

Ni: 3- to 21-fold higher

S: 5- to11-fold higher

Some results of the seepage water study

- Seepage water flows two directions
- Elevated sulfate and nickel concentrations were seen in the nearest ditch Kovero-oja
 → and slighty elevated concentrations in Ekojoki
- Other elemental concentrations (Cu, Co, As) decrease or stayed at the natural level in downstream (Ekojoki)

Some results of the seepagewater study

- One of the main result was that the recycling of the mine water could be more efficiently.
- An environmental permit procedure pending in authorities (at regional State Administrative Agencies)

Thank you

