### Mine Water Management -From Pre-feasibility to Closure





Kuopio, Finland 2013-09-24

## Outline

> Water managment plan approach

- Water balance models as a tool for planning and management
- Pre-feasibility- Laver example
- > Under operations- Aitik example
- Closure Planning



### Water Management Plan Approach

Define objectives

- Define exisiting conditions
- > Develop water balance models
- Identify and implement optimization measures
- Identify and minimize risks
- Water management plan/reporting internal control/ Annual Report



### **Model Construction**

GoldSim (<u>www.goldsim.com</u>)

#### Reasons

- Commonly used for mine and environmental application (large user group)
- Visual development environment with a large number of modeling "elements" including logical and discrete event capabilities
- Strong probabilistic capabilities
- Hierarchical structure
- Integration with Excel and relational databases
- Chemistry capabilities
- Sensitivity and optimization tools
- GoldSim Player dashboard models can be used license-free
- Number of different modules for different types of models



## What is Goldsim?

## Framework for developing deterministic and probabilistic simulation models





### Input data types

### Static Data

Physical data such as: catchment areas, max and min volumes, stage-volume relationships, etc.

#### Real-Time Pre-Operational and Operational data

Measured data such as: historical precipitation, flow meter records, mine production, slurry flow and density, etc.

### > Dynamic and Uncertain Data

Projected data or calculated such as: future precipitation, future mine production, seepage rates, heap draindown, etc.



### **Model Development**



7

### **Model development**

## The conceptual model is the key to building a useful water balance model

### Conceptual model development is a step-wise process:

- 1. High level conceptualization based on facility arrangement and flow connections between facilities (schematics, flow sheets engineering designs, aerial photos, maps, previous water balances, examine physical layouts against schematics, etc.)
- 2. Consider primary purposes of model
- 3. Develop water balance submodels for facilities
- 4. Identify sources of measured data
- 5. Formulate approaches for non-measured data
- 6. Construct and test model
- 7. Iterate where conceptualizations need revision



## Model development: High level conceptual model



### **Conceptual Model: Add detail**

### **Precipitation**



### **Pre-feasibility-Laver**

- Laver is a low grade, high tonnage Cu deposit located in northern Sweden
- Boliden is currently conducting a
  - > 700 Mt ore
  - > Open pit, Large tailings facility



Road 95

Road 45

Arvidsjaur

Exploration permits, Boliden Mineral AB
Exploration permits, Other company

50

1 km

Road 94

BOLIDEN

## Pre-feasibility-Laver: Objectives

Often dictated by permit requirements and mine requirements.....

### **Regulatory:**

- Pre-mining conditions
- Potential impacts to flow regime
- Potential impacts to water quality
- Discharge flow and quality
- Extreme climate events
- > Water use
- Plan to minimize potential impacts

#### Mine Planning/Water Management:

- Pre-mining conditions
- Water demand
- > Water storage
- Water recycling
- Water separation (contact v. non-contact)
- Discharge flow and quality
- Extreme climate events
- Plan to minimize potential impacts



### Pre-feasibility: Model Development



## **Pre-feasibility:***Existing Conditions*

### **Background Data**

- Drainage basins
- Natural water flow/chemistry
- Climate data

140

120

100

ooration nth)

400

Monthly I 20 20

0

- Preliminary groundwater assessments
- Environmental data



Jul-96 lan-96

### Pre-feasibility: Additional data

- Mine plan
- Estimated mill water requirements, paramenters
- Tailings void water loss
- Storage pond/tank volumes
- etc

| Year | Pit Depth (m) | Dewater Rate<br>(m <sup>3</sup> /d) |
|------|---------------|-------------------------------------|
| 0    | 0             | 270                                 |
| 1    | 25            | 559                                 |
| 2    | 50            | 878                                 |
| 3    | 75            | 1227                                |
| 5    | 100           | 1607                                |
| 10   | 200           | 3426                                |
| 15   | 300           | 5726                                |
| 18   | 400           | 8509                                |

| Parameter                                        | Units   | Value       | Source                                             |
|--------------------------------------------------|---------|-------------|----------------------------------------------------|
| Mine Life                                        | years   | 20          | Production schedule from Boliden                   |
| Process Slurry Percent Solids                    | %       | 40          | Estimated based on discussions with Boliden staff  |
| Process Slurry Daily Variation in Percent Solids | %       | ± 5         | Estimated based on observations at other mines     |
| Ore Moisture Content                             | %       | 2           | Estimate from Boliden                              |
| Ore Production Rate                              | tonne/d | See Table 4 | Estimate from Boliden                              |
| Ore Production Rate Daily Variability            | %       | ± 15        | Production schedule from Boliden                   |
| Maintenance Shutdown                             | NA      | 1 day per   | 8200 hours production per year; 8760 hours in year |
|                                                  |         | 16 days     |                                                    |
|                                                  |         | operation   |                                                    |
| Flow Rate in Tailings Line on Days Mill is       | m³/hr   | 500         | Estimated                                          |
| shutdown                                         |         |             |                                                    |
| Tailings Thickening                              | %       | 0 or 40-60  | Estimated from Aitik expansion feasibility         |



### **Pre-feasibility:** *The model*



## Pre-feasibility-Laver: *How are we using the model*

- > Optimize storage volumes
- Pump Capacity
- Climate scenarios
- Building in chemistry-internal water quality/discharge water quality
- Water use (groundwater and surface water)/downstream impacts
- > Tailings deposition and water management
- > It will be a critical tool in the permitting process



### Aitik: Operations Water Management

- One of Europe's largest copper mines.
- Aitik pit is 3 km long, 1.1 km wide and 450 meters deep.
- Salmijärvi Pit will be 1 km long, 800 m wide and 270 meters deep.
- The deposit consists of chalcopyrite containing copper, gold and silver.
- Production 2012, 34 Mt.
- Tailings facility ca 9 km<sup>2</sup>



### Aitik: Building a water managment plan

- Water storage capacity
  - Storm events (snow melt, rain)
- Optimization of mine water
  - Increased efficiency use
  - Water use/recycling
- Discharge water
  - New demands from regulators
  - Water treatment?
- Pumping
  - Building in redundancy
  - Evaluating failure scenarios
- Expansions/Changes
  - Tailings facility
  - Increased Production









### Aitik: Model Development





#### Aitik Mine Water Balance Conceptual Model

### Aitik: Goldsim model



**BA Mines/GMMY** 

2013-09-24

### Aitik: Model Calibration



**BA Mines/GMMY** 

### Aitik, water use: Sources



25

### Aitik water use: Outflows





### Aitik: Discharge rates/Climate

effects of preceding year

**Annual Precipitation (mm)** 

BП

- Production increase from 36 to 45 Mton/yr, increase in size of tailings magasine and clarification pond.
- 2 Alternatives considered for HS and LS tailings deposition, additional water storage capacity:
  - > Alternative 1: HS-South, Storage South
  - > Alternative 2: HS-South, Storage North
- Alternatives run with multiple wet years, multiple dry years and average year climate scenarios
- Both Alternative 1 and 2 have the full built capacity by 2015, and are essentially null runoff areas (only runoff from dam walls)
- All water in either the existing clarification pond or new north clarification pond is considered to be "dirty" water.
- All excess water from the HS magasin passes through treatment prior to re-entering the system or being discharged.













| Precipitation Conditions                       | VR Basin (Potentially<br>Treated) Discharge<br>(Mm <sup>3</sup> ) / % of Total<br>Discharge | Clarification Pond<br>(Untreated)<br>Discharge (Mm <sup>3</sup> ) / %<br>of Total Discharge | Total Discharge<br>(Mm <sup>3</sup> ) |
|------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|
| Average for all years                          | 3.8 / 54%                                                                                   | 3.3 /46%                                                                                    | 7.1                                   |
| Average for all years; wet years for 2019-2020 | 6.7/53%                                                                                     | 6.0 / 47%                                                                                   | 12.7                                  |
| Average for all years; Dry years for 2019-2020 | 1.9 / 38%                                                                                   | 3.1 / 62%                                                                                   | 5.0                                   |



### BOLIDEN

## How are we using Water/Mass balance models for water management today?

- Layout-planning and design
  - Sizing of canals, basins, ponds, pumping capacity
- Estimation of environmental impacts
  - > rechage rates/comsumption rates/discharge rates- how much, quality and when
  - Placement of water treatment systems (for best effect)
- Water management
  - Water requirements
  - Optimization of water usage
  - Effects of blending different source streams, recycling water
  - Optimization of discharge
  - Short term prediction for operational conditions
  - Planning for changes-production increases
  - Long term forecast for operations/closure scenarios
  - Redundancy tests
    - Rep stop, climate events, system disturbances-pump failures, construction, power



### **Closure planning:**

- Effects of remediation
  - Changes in flow
  - Changes in chemistry
  - Pit filling and pit lakes
  - > Discharge flows
  - Regulators want to know how well it works before you finish it





### **Closure Planning**



## **Closure planning: Pit Lakes**



### **Closure planning:**

**Water Chemistry Prediction** 

Excel or GoldSim: Simple mixing models with no geochemical processes Excel + PHREEQC: Excel for mixing calculations and PHREEQC for geochemical processes GoldSim + PHREEQC (external calculation): GoldSim for mixing calculations and PHREEQC for geochemical processes GoldSim + PHREEQC (internal calculation): GoldSim for mixing calculations and PHREEQC for geochemical processes

#### Water Column Structure (Stratification)

CE-QUAL-W2 DYRESM

Water Chemistry and Stratification

PITLAKQ (combines CE-QUAL-W2 and PHREEQC)



