

Comparison of case studies from natural formed and constructed wetlands in passive treatment of mine waters

Marja Liisa Räisänen Geological Survey of Finland, Regional Office for Eastern Finland

The mechanisms of metal removal and retention in passive treatment systems are varied, and work out with self-acting reactions (see www.gardguide.com):

- Oxidation
- Precipitation as hydroxides and carbonates under aerobic conditions
- Precipitation as sulphides and hydroxy-sulphate (aluminum special case) under anaerobic conditions
- Complexation and adsorption onto organic matter
- Ion exchange with organic matter
- Uptake by plants (phyto-remediation)

No active addition of chemicals or remove adsorbents and add new ones

Waste water treatment with passive water treatment structures benefits:

- the low cost of their construction, operation and maintenance
- low on-going energy requirements
- overall decreased environmental and human health risk from discharge of contaminated wastewater

Constructed wetlands generally have impervious clay or synthetic liners and include engineered structures to control flow direction, hydraulic retention time and water level

(adapted Wendling & Mroueh 2013, unpublished VTT-report)

Schematic representation of a free water surface (FWS) flow wetland.

Schematic representation of a subsurface horizontal flow (HF) wetland

Schematic representation of a subsurface vertical flow (VF) wetland (adapted Wendling & Mroueh 2013)

Cross section
-Mixture of aerobic and anaerobic pool

Mine waste water types in Finland

- Acidic, metal and sulphate bearing waters derived from oxidation and dissolution of sulphide minerals (e.g. Fe sulphides)
- Neutral or alkaline, hydrogen sulphide-rich waters with low metal content arising from buffering reactions and/or sulphate reduction
- Saline formation waters (e.g. process water)

Use of passive treatments:

- constructed wetland pools
- former settling pond transformed into flooded mire or meadow
- treatment peatland (infiltration bog)
- naturally formed wetland (mire)

In summer 2007, four wetland ponds (aerobic-anaerobic) were constructed in the Suursuo bog, west of the Luikonlahti tailings facility

a peat-limestone-based wetland-type passive system

Case 1: constructed wetland pools

- ☐ Recovering acid generating tailings with basic, carbonate bearing material changed markedly the seepage water quality
- \Rightarrow acidic, metal bearing seepage water transformed into neutral (less acidic), Fe and SO_4 bearing seepage water with minor trace metal content

Additional removal in wetland pools

- 96 % for Fe and 30 % for S and
- ~10-30 % for trace metals
- ⇒ Limited reducing of sulphate due to high ratio of sulphur to Fe and other metals and As (S/Fe>3)
- ↑ Additions of Fe-oxides would intensify Fe-sulphide precipitation!

Case 2
Former settling ponds were let to transform into flooded meadow

Removal % 47-96 %; Ni pretty good (88%)

Case 3: naturally formed wetland (mire)

- Highly weathered waste rock pile with acidic effluent (pH≤2.5)

⇒wetland (mire) formed by sedimentation of organo-Fe precipitates in the creek plateau

- Alkalinity is mainly produced by sulphate reducing, but not enough
 - pH of outflow ~3.5 (pH of sediments ~4.5)
 - Metal retention excellent!

Case 3 Treatment peatland

Early summer: low removal of process water remains

In summer (end of July): high removal of process water remains

Challenges for passive treatment:

- Suitable S:Fe ratio and/or presence of other sulphidic traces
- Addition of neutralizing material (limestone or other basic material adsorbent or infiltrative bed)
- Spreading of 'right' type vegetation (at least 2-3 years)
- How to generate 'biologically active conditions'

