

UiT The Arctic University of Norway

The geochemical signature of Cu mineralisation preserved in stream sediments from the Alta-Kvænangen Tectonic Window, Northern Norway

Master's thesis in Geology, GEO-3900, July 2021

Johan Bang Hilmo

Main supervisor: Sabina Strmic Palinkaš Co-supervisor: Harald Hansen

The Alta-Kvænangen Tectonic Window

Purpose of the study

Methods

- Tectonic window exposed in the Caledonides of Northern Norway
- Hosts several Cu deposits

Background

• Hosted by both mafic rocks and sedimentary lithologies.

From Melezhik & Hanski (2013)

Background

Kåfjord, the study area

- Raipas Supergroup
- Carbonate stable isotope compositions (δ¹³C, δ¹⁸O)
- Mafic rock- and sediment-hosted Cu mineralisation

Stable isotope compositions of carbonates from Simonsen (2021). Figure modified from Melezhik et al. (2015)

Purpose of the study:

Investigate whether the geochemical signature of Cu mineralisation is preserved in stream sediments in the AKTW, and if so to characterise that signature.

Purpose of the study:

Investigate whether the geochemical signature of Cu mineralisation is preserved in stream sediments in the AKTW, and if so to characterise that signature.

- Bulk chemistry of stream sediments
- Geochemical characteristics of heavy minerals
- Stable isotope composition of carbonates

Background

Sampling of stream sediments

44 stream sediment samples:

- 1. Sediment-hosted Cu mineralisation
- 2. Mafic rock-hosted Cu mineralisation
- 3. Both the sediment- and mafic rockhosted Cu mineralisation

Base map modified after The Geological Survey of Norway (2021) with structures from Bergh & Torske (1988)

Sieved fractions, additional preparation steps and methods

Fraction (µm)	Additional preparation	Method
<63		Bulk chemistry
63-125		
125-250	Magnetic separation Picking of minerals	Bulk chemistry SEM-EDS LA-ICP-MS Stable isotope composition of carbonates
250-1000		
>1000		

Mag

Hem

Po

Bn

Сср

Cct

Py

Cal, Dol, Mgs

Sieved fractions, additional preparation steps and methods

Fraction (µm)	Additional preparation
<63	
63-125	
125-250	Magnetic separation Picking of minerals
250-1000	
>1000	

- Minerals with different magnetic susceptibilities separated.
- Magnetite and Pyrrhotite extracted using hand held magnet.
- A magnetic separator used for the rest.

Figure modified after Rosenblum & Brownfield (2000).

Sieved fractions, additional preparation steps and methods

Fraction (µm)	Additional preparation
<63	
63-125	
125-250	Magnetic separation Picking of minerals
250-1000	
>1000	

- Hand-picking of minerals from magnetically separated fractions.
 - No further separation needed (e.g. heavy liquids).

Grains of Mag separated from different samples (J015, J027, ...)

Sieved fractions, additional preparation steps and methods

Fraction (µm)	Additional preparation	Method
<63		Bulk chemistry
63-125		
125-250	Magnetic separation Picking of minerals	Bulk chemistry SEM-EDS LA-ICP-MS Stable isotope composition of carbonates
250-1000		
>1000		

Physicochemical properties (Eh, pH)

Purpose of the study

Methods

• Redox potential and pH measured in the pore water of 8 samples.

Background

• Eh, pH and the solubility of minerals in surficial water.

Bulk chemistry of stream sediments

• <63 µm versus125-250 µm fraction.

Bulk chemistry of stream sediments

- <63 µm versus125-250 µm fraction.
- Accumulation of dissolved elements on the surface of grains.

Schematic illustration of how the surface area of grains may vary for a given mass of sediments. From Horowitz (1991).

Background

Bulk chemistry of stream sediments

- <63 µm versus125-250 µm fraction.</p>
- Accumulation of dissolved elements on the surface of grains.
- Bulk chemistry of sediments from different streams.
 - Møllneselva (M) and Brakkelva (B) drain mafic rocks.
 - Annaselva (A) drain complex mineralisation (e.g. Se-rich sulphide phases) hosted by sedimentary lithologies.

• Cu correlates with chalcophile elements (e.g Ag, Zn, Mo).

Draining carbonate lithologies

<63 µm fraction, Annaselva stream

Background

Draining mafic lithologies

125-250 µm fraction, Brakkelva stream

Craining all lithologies <63 µm fraction, Møllneselva stream

- Cu correlates with chalcophile elements (.e.g Ag, Zn, Mo).
- Divalent cations, for example barium, may substitute Ca in CaCO₃ (Ba²⁺↔Ca²⁺).

Draining carbonate lithologies

<63 µm fraction, Annaselva stream

Oraining mafic lithologies <63 µm fraction, Brakkelva stream</p>

Draining all lithologies <63 µm fraction, Møllneselva stream

- Cu correlates with chalcophile elements (.e.g Ag, Zn, Mo).
- Divalent cations, for example barium, may substitute Ca in CaCO₃ (Ba²⁺↔Ca²⁺).

Does the correlation reflect the Cu mineralisation occuring in carbonate-rich lithologies?

Draining all lithologies

<63 µm fraction, Møllneselva stream

Draining carbonate lithologies

<63 µm fraction, Annaselva stream

Draining mafic lithologies

<63 µm fraction, Brakkelva stream

3. ***** Ba (ppm) Ba (ppm) Ba (ppm) ••••• Cu (ppm) Cu (ppm) Cu (ppm)

- Cu correlates with chalcophile elements (.e.g Ag, Zn, Mo).
- Divalent cations, for example barium, may substitute Ca in CaCO₃ (Ba²⁺↔Ca²⁺).
- Similarly, the correlation between Cu and siderophile elements (V, Ni, Co) may reflect the mafic host rock lithology.

SEM-EDS analyses of heavy minerals

- Confirm the mineralogy of grains.
- Select grains to be analysed by LA-ICP-MS.
- Determine internal standards (wt.% Fe).

LA-ICP-MS of heavy minerals

- Oxides analysed:
 - 76 Fe-oxy-hydroxides
 - 18 ilmenite
 - 59 hematite
 - 351 magnetite

LA-ICP-MS of heavy minerals

- Oxides analysed:
 - 76 Fe-oxy-hydroxides
 - 18 ilmenite
 - 59 hematite
 - 351 magnetite

LA-ICP-MS of heavy minerals

- Sulphides analysed:
 - 32 chalcopyrite
 - 39 pyrite
 - 4 pyrrhotite

Indicator minerals, LA-ICP-MS of heavy minerals

- Composition of minerals can differ with respect to the environment in which they are formed in.
 - Example: Magnetite of magmatic/hydrothermal origin.

Indicator minerals, LA-ICP-MS of heavy minerals

- Composition of minerals can differ with respect to the environment in which they are formed in.
 - Example: Magnetite of magmatic/hydrothermal origin.

Background

• Magnetite does not seem to be a reliable indicator mineral in AKTW.

Indicator minerals, LA-ICP-MS of heavy minerals

Carbonate stable isotopes

- Two groupings:
 - Storviknes: high positive δ18O, δ13C ~ 0 ‰.
 - Kvenvik: Lower, but positive δ18O and δ13C typically +3 to +10 ‰.

Reference isotopic compositions of magmatic carbonates: Stakes & O'Neil (1982) and marine carbonates: Veizer & Hoefs (1976).

Conclusions

Background

- The <63 µm fraction is enriched in most of analysed elements.
- A different bulk chemical signature is displayed in sediments from each of the streams.
 - Chalcophile elements (hydrothermal signature).
 - Divalent cations (carbonate-rich lithologies).
 - Siderophile elements (mafic rocks hosting the Cu mineralization).
- Magnetic separation + hand picking of heavy minerals is efficient.
- Hydrothermal Cu mineralisation: high Ag and Se.
 - Signature of Fe-oxy-hydroxides resembles the hydrothermal signature of sulphides. Indicator mineral?
- Isotopic signature of carbonates is preserved in stream sediments.

Thank you!

