SUSMIN

- Tools for sustainable gold mining in EU

ERA-MIN Stakeholder Forum meeting
26th of March, 2014
Budapest, HUNGARY
SUSMIN
- Tools for sustainable gold mining in EU

Budget: 1.9 ME

Partners: Geological Survey of Finland (GTK), Wroclaw University of Technology (WUT), Geological Institute of Romania (GIR), University of Babes-Bolyai (UBB), Luleå University of Technology (LTU) University of Porto (UP) and Trinity College Dublin (TCD)

NEEDS
• Sustainable supply of gold is crucial to revitalise Europe’s industry and economy to meet increasing demand without compromising the social and environmental issues of gold mining
• Gold mining has challenges in eco-efficiency and extraction methods (e.g. cyanide)
• Novel sustainable methods and technologies for mineral processing, water treatment and management of environmental and social impacts are needed

APPROACH
• New geophysical techniques for gold exploration
• Eco-efficient ore beneficiation methods and alternatives to cyanide leaching
• Novel water treatment solutions by advanced adsorbents
• Solutions for monitoring, characterising, predicting and preventing environmental effects of mining
• Tools for enhancing the corporate social responsibility, community engagement and management of the stakeholder relations
• Case studies in Finnish, Swedish, Portuguese and Romanian mines
SUSMIN
- Tools for sustainable gold mining in EU

BENEFITS
• Supports environmentally, socially and economically sustainable gold production in EU
• Technologies and solutions to manage economical and environmental risks related to gold mining
• Achieve sustainability and long term development of the mining areas
• Enhance mechanisms of the corporate social responsibility in gold mining areas

USERS & COMPETITION
• Global mining industry (e.g. RMGC, MedGold, Agnico-Eagle, Dragon Mining), technology companies (e.g. Kemira Oyj, Oulu Water Alliance Ltd, Outotec Finland Oyj), equipment suppliers, consults and authorities in EU
→ Direct and significant economic benefits
SUSMIN
Tools for sustainable gold mining in EU

RESEARCH AREAS

1) Gold exploration
2) Mineral processing
3) Mine water treatment technologies
4) Mine waste management
5) Environmental monitoring, modelling and risk assessment
6) Sosio-economics of gold mining
7) Synthesis, communication, coordination
Case study sites

Romania
Rosia Montana, Brad-Certej

Portugal
Castromil and Lagoa Negra
Case study sites

Finland
Agnico-Eagle Kittilä Mine

Finland and Sweden
Dragon Mining,
Several sites
WP1: Gold exploration

Partners: UP and GIR WP leader Alexandre Lima

• OBJECTIVES
 – Obtain information on the geology of the ore deposits and geochemical behaviour of different elements during gold deposit genesis
 – Develop Geographical Information System (GIS) for the inventory, characterization and prediction of gold ores
 – Enhance the use of mineral mapping and 2/3D modelling using spatial data analysis → Produce potential and predictive maps and assess far-field geochemical characteristics of gold deposits
 – Develop and test best suitable geophysical techniques or combination of methods for gold exploration at the study sites

• EXPERIMENTAL WORK
 – Geophysical techniques and core samples

• OUTCOMES
 – Recommendations for the exploration programmes to enhance sustainable exploration and exploitation of important mineral resources
WP2: Mineral processing

Partners: UP, GTK, GIR WP Leader António Fiuza

- **OBJECTIVES**
 - Develop mineral processing to concentrate selectively different gold bearing minerals
 - Develop cost effective recovery of gold from selected waste materials
 - Investigate alternatives to cyanide leaching
 - Characterize process chemical residues and their surface chemistry in flotation
 - Investigate energy efficient magneto-electrowinning techniques

- **EXPERIMENTAL WORK**
 - Mineralogical and chemical characterization of ore and gangue
 - Lab-scale beneficiation test work e.g. comminution, flotation, leaching
 - Verification tests

- **OUTCOMES**
 - Valuable information about the type of occurrences of gold and their relationship with the other identified mineral of the mineral assemblages
 - Eco-efficient and selective recovery of gold with decreased environmental impacts
 - Mining companies can use the developed processes in mineral processing and technology companies in technology commercialization
WP3: Mine water treatment technologies

Partners: UP, WUT, GTK WP leader: Małgorzata Szlachta

• OBJECTIVES
 – Investigate adsorptive materials applicable for treatment of As-contaminated effluents
 – Improve available techniques and solutions for the robust and cost-effective treatment of mine waters

• EXPERIMENTAL WORK
 – The approach is to investigate and compare advanced adsorbents
 • Existing materials (e.g. AC, natural and modified minerals, biopolymers) provided by technology partners
 • Selected porous media (e.g. recycled materials) will be modified by impregnation/loading with metal oxides
 • Nanoparticles such as NZVI (Nano Zero Valent Iron), can also be incorporated in macroporous materials
 – Methods include: Characterization of adsorptive materials, batch adsorption and fixed bed column experiments, modelling of the data, pilot tests

• OUTCOMES
 – Recommendation of use of different adsorbent in cost-effective treatment of mine waters at gold mines
WP4: Mine waste management

Partners: UP, LTU, GIR

WP leader Raluca Maftei

• OBJECTIVES
 – Assemble information of European legislation of waste management at gold mines
 – Geochemical characterization, leaching behavior and long-term stability of tailings
 – Influence of additives on the mobility of arsenic in cemented paste backfill (CPB)
 – Study long-term stability and impermeability of dam structures
 – Investigate the performance of multilayer cover structures

• EXPERIMENTAL WORK
 – Geochemical characterization of tailings by static and kinetic tests and long-term assessment of physico-chemical stability of secondary precipitates
 – Geological and geophysical studies regarding permeability of tailings dams and ground beneath the dams → slope stability assessment
 – Field tests to characterize time-evolution of the drainage from paste deposition
 – Characterization of waste materials produced in water treatment with adsorbents (WP3) by using the direct magneto-electrowinning cell developed for WP2

• OUTCOMES
 – Recommendations for mine waste management, multilayer cover structures,
 – Safe tailing dams and stabilisation of mine wastes by paste deposition to prevent formation and seepage of contaminated drainage from gold mine wastes
WP5: Environmental monitoring, modelling and risk assessment

• Partners: GTK, UBB, GIR WP leader Soile Backnäs

• OBJECTIVES
 – Evaluate and test new methods for environmental monitoring, modelling and risk assessment → Enhance environmentally sustainable mining by characterizing and evaluating the anthropogenic emissions compared to the background, modelling reactions and pathways of contaminants, and assessing the risks

• EXPERIMENTAL WORK
 – Testing of new water quality monitoring and field analysis methods
 – A new approach of geochemical and isotope methods for assessing migration of harmful substances from mining sites and waste areas
 – Use of hydrogeochemical modelling tools for the prediction of chemical transformation and long-term impacts of mining
 – Geochemical characteristics and bioavailability of metals and metalloids in soils → Integrated risk assessment of ecological and health risks

• OUTCOMES
 – Recommendations for environmental monitoring and risk assessment of gold mine environments
WP6: Sosio-economics of mining

Partners: UP, GTK, UBB, GIR WP leader Calin Baciu

• **OBJECTIVES**
 – Analyse the socio-economic context of modern gold mining in relation to environmental issues
 – Identify the nature of conflicts and solutions to increase level of mutual confidence benefits to the community and stakeholders
 – Develop and enhance the mechanisms of CSR (corporate social responsibility), community engagement and management of the relations with the stakeholders
 – Analyse the post-operational development of mining sites, based on proper mine closure procedures and post-mining land-use, use of the environmental bonds, and the identified opportunities for socio-economic development

• **EXPERIMENTAL WORK**
 – Questionnaires of a series of relevant social and economical indicators and questions of public perception (A comparative study between sites)

• **OUTCOMES**
 – Achieve sustainability and long term development of the mining areas
 – Recommendations to characterize the socio-economic environment of gold mines and to design the post-operational development of the gold mining areas
Outcomes and impacts of the research

• Project provides technologies and methods for sustainable mineral processing, water treatment and management of environmental and social impacts
• Results will be combined to reports and recommendations for mine industry, environmental authorities as well as consultants
• Through the case studies, the results have direct positive impact to sustainability on gold mines in participating partner countries
• After the project, the results and recommendations can be implemented also in other EU countries for enhancing the socio-economical and environmental sustainability in gold mining
• Result will be disseminated through workshops in participating countries
Thank You for Your Attention!

Contact: soile.backnas@gtk.fi

More info from SUSMIN webpages: http://projects.gtk.fi/susmin/