

Guidelines for Mine Water Management

Management of Water Balance in Mining Areas WaterSmart Seminar 28.8.2015

Report: Guidelines for mine water management

Target groups:

- Mining companies in Finland to support design and decision-making processes throughout the mine life-cycle starting from early planning stages
- All other relevant parties involved such as consultants, environmental administration, technology providers, research institutes etc.

Working group:

Henna Punkkinen, Lea Räsänen, Juhani Korkealaakso, Risto Pajarre & Ulla-Maija Mroueh, VTT; Samrit Luoma, Tiina Nurminen, Soile Backnäs, Kaisa Turunen & Antti Pasanen GTK; Sari Kauppi & Kirsti Krogerus, SYKE

Objectives

- Describe current status, needs, and challenges of management of mine water balance
- Identify expected future needs for water management solutions
- Introduce good practices for water balance management:
 - monitoring,
 - water balance modelling,
 - integration of monitoring, modelling and process control
- Present examples of good water management actions implemented in practice
- Describe water management procedures and decisions in different phases of mine life cycle

\rightarrow Better implementation of the best practices in mine water management

Background

- Water management is the most challenging stress factor at Finnish mines (Mine stress test report¹):
 - Mining influences the quality and quantity of waters at mine areas and in the surroundings, and
 - changes hydrological and topographical circumstances of the area
 - Effects on the surface runoff, groundwater behaviour, soil moisture content and evapotranspiration
- Sites are unique proper water management requires understanding of the site specific factors
- Water balance management and waste management are linked
- Minimum requirements on water balance monitoring and reporting set in legislation and permits

Proper water balance management is critical to the mine

- Benefits of efficient water management and early planning:
 - Reduction of risks and environmental impacts
 - Cost savings, e.g. optimal storage capacity and diversion of different waters, optimal recycling
 - Social acceptance
- Preparation to extreme situations and changes of water balance during mine life-time
 - Assessment of water balances in mine planning stage
 - Forecasting of hydrological conditions
 - Sufficient monitoring of hydrological conditions, adaptation to potentially risky situations
 - Sufficient knowledge about the quality of water
 - Availability of data from longer periods
 - Dynamic development of monitoring program, water balance modelling and water management

Current needs

- Competence development and practical introduction of water management and modelling tools
- Improved (on-line) monitoring tools for data collection
 - Both water quantity and quality important for optimal collection, treatment and recycling of waters
- User-friendly water balance management tools
 - Quickly updatable, user-friendly interfaces
- Tools which enable integrating the water balances of different operations to one "site-wide-water-balance"
 - How to overcome compabitility challenges
- Integration of water balance management to process control system of the mine

Site wide water balance (Haanpää 2013, muokattu).

Water balance modelling tools

- Spreadsheet, e.g. Excel based deterministic models quite commonly used but can act as dynamic models with a specialised add-in tool
 - Useful for easy projections, can be rapidly implemented and used to store, display, and check dynamic model inputs, or display and analyse dynamic modelling results
 - Drawbacks: Not transparent, not very well suited for complex modelling, complex models may be difficult to interpret or explain, add-ins needed for uncertainty assessment, errors
- Shift from deterministic methods towards dynamic models, that can be coupled to hydrologic, geochemical, economic, reactive transport and to chemical equilibrium models
- Dynamic modelling simulators: Extendable modelling platforms GoldSim, MATLAB Simulink; prepackaged modelling systems, STELLA, Vensim...
 - More versatile, suitable for complex modelling tasks and complex scenarios, more detailed evaluation
 - WSFS Watershed simulation and forecasting system
 - WSFS has mainly been used for flood forecasting, realtime monitoring, nutrient load simulation and climate change research

Other modelling tools

Hydrogeological and groundwater flow models

 MODFLOW, MT3DMS, FEFLOW, MODFLOW SURFACT, HydroGeoSphere (HGS), PHREEQC

Equilibrium and chemical models

HSC Sim, PHAST; PHREEQC, TOUGHREACT, HYDRUS 2D/3D, ChemSheet, OLI

01/09/2015

Monitoring

- The water monitoring program depends on the mine characteristics, surrounding grounds and waters, etc.
 - Parameters, such as temperature, pH, EC, Eh, O₂, alkalinity, anions, metals, N, P, etc.
 - Groundwater monitoring –physico-chemical quality and groundwater level, in parallel with local climate measurements
 - Monitoring of surface water and other natural waters flow measurements, physico-chemical analysis
 - Monitoring of tailings, dams, etc.
 - Weather data own weather station if possible
- Monitoring tools: on-line, on-site/field and laboratory
 - On-line: flow, water level, pH, T, EC, turbidity, NO₃-N, NH₄-N
 - Field methods: pH, T, EC, turbidity

Monitoring, recommendations

- The monitoring program should progress and develop
 - Starting from the measurement of baseline water conditions and gathering of meteorological information
 - Development on the basis of critical assessment of results from longer periods
- Continuous monitoring of water flow and water level in basins are recommend as good practices
 - Regular basin inspections are important to confirm the operation of monitoring equipment and water level in basin
- Regular monitoring of surface and groundwaters and water level combined with weather data are important for forecasting of hydrological conditions, to prevent unexpected water situations
- Monitoring results should be available in a database with easy access
- Integration of data from on-line monitoring tools to water management program would be ideal

 Sources: Välisalo, et al. 2014 + several other literature sources

Good practices

- Pro-active approach aiming to solving out the causes behind problems beforehand instead of addressing symptoms
- Water balance management is started from the early planning stages and continues throughout the life-cycle of the mine
 - Needs to be developed and updated along different phases and within phases
 - Development of knowledge, changes of water balance and operations
- The report includes general guidance tables summarising:
 - which topics should be considered in different phases of the mine lifecycle
 - which kind of results and data should be produced, and
 - the most important permits
- Applied case specifically, e.g. different phases may be parallel

Water management in different mine phases

Mine phase	Contents/ Requirements	Results and information for the	Permits
Prospecting	 Gathering information from other regional mining operations Performing environmental baseline study Water availability 	 Baseline studies of environment, vegetation, fish, etc. including meteorological data, hydraulic properties to be performed at least 2 yrs before any changes to the environment to help in developing monitoring program 	 Reservation notification Prospecting work
Prefeasibility	 Planning the use of water on a monthly basis implemented in the water model Planning water treatment using the baseline study data Preliminary mine closure plan 	 Site-specific water supply implementation to project requirements Preliminary water treatment plan for water user and discharge What-if scenario from model Information for Environmental Impact Assessment Mine closure evaluations 	Natura Assessment
Exploration	 Sampling of site for mineral analysis without alterations to environment 	Mineral profile data	 Ore prospecting permit Notification of pilot activities
Conceptual design	 Planning water monitoring program Water management model setup Catchment descriptions and management plans 	 Mine risk class Knowledge of water sufficiency for the mine life cycle Knowledge on project mine water requirements Water treatment discussions Compilation of the regulatory processes 	 Comply with Nature Protection Act Disposal Permits related to Conservation Act

Mine phase	Contents/ Requirements	Results and information for the	Permits
		regulatory units	
Feasibility	 Mine feasibility evaluations and impact assessment from baseline data Daily water management program that includes water quality and quantity monitoring Water sources and demands for mine Discharge quantity and quality as well as costs 	 Mine water management program implementing model and monitoring data Mine water plan including water sources, requirements of the mine, water treatment for use and discharge, etc. 	 Nature Assessment Environmental Impact Assessment Waste management plan Redemption permit for the mining site Dam Safety
Investment decision and mine site plan Construction	 Updating plans and models: mine water plan, water management plan, monitoring plan, water treatment plan, etc. Water infrastructure plan and design Water infrastructure in detail 	 Water use permits Water infrastructure construction Water supply and dam safety approvals Water infrastructure (treatment plants, 	 Land Use & Building Act Water permit Environmental permit Disposal permit Mining permit Mining safety permit
and commissioning	Water monitoring and reportingRevisions of models and programs	 etc.) fulfilled according to permits Reporting of water qualities and quantities according to permits 	
Operation	 according to collected water monitoring data Revisions according to operational needs Update of closure plans 	 EIA revisions approval 	Permit revisions and updates
Closure, post- closure and after-care	 Water management plans for closure Implementation of water quality and quantity monitoring during closure phases 	 Water monitoring and reporting during closure in compliance with permits Rehabilitation plan 	Permit revisions and updates

Estimated development of water balance management

	Present (<i>stat</i> e of the art) 2014	Intermediate 2020	VISION 2030
Technology	 Software available, few appl. to mines & if applied, only during operation stage Monitoring of env. waters not connected to software (dynamic) 	 Dynamic software for environmental waters Implementation of chemical equilibrium modules 	Dynamic water management including online quantity & quantity monitoring and chemical equilibrium/reaction modules
Products	 Software: GoldSim, Stella Online monitoring sensors for flow, level, temp only Onsite measurements of pH, EC. etc Lab. measurement for ions, BOD, COD, etc 	 Fast lab measurements Larger array of online sensors 	 Water management software for mine-specific adaption with userfriendly interface showing water quantity & quality for process, tailings, environment, groundwaters Online water quality sensors
Drivers	 Legislation Public opinion Environmental accidents Water shortage/surplus 	Risk minimizationIncreased water recycling	 Safety for the environment Public approval
Bottlenecks	 Premine operation data not available Online monitoring, e.g. sensor lifetime Groundwater management Information sources required for establishing a site wide water balance is scattered to different stakeholders 	 Online measurements for fast reacting to perturbations 	Sensor lifetime/maintenance costs

Thank you!

TEKNOLOGIASTA TULOSTA

Now

<u>.</u>